A discussion with the plastics pros at AIP on how the ISO 13485:2016 standard improves quality assurance for medical machined plastics.

 

What sets a quality management system (QMS) above the rest for medical device manufacturing and machining? Safety, sanitation and product integrity are, without a doubt, crucial for any plastics machining company working with materials for medical use.

 

How can you ascertain the validity of a company’s QMS?

 

One way to do this is to look for whether the machining shop is ISO 13485:2016 certified. This regulation requires that a certified organization demonstrate that their QMS is effectively implemented and maintained.

 

At AIP, we not only promise a quality assurance program, we are ISO 13485:2016 certified. As a precision plastics machining company, we have worked with medical OEMs to develop parts for critical medical devices for more than 35 years. We understand the value of a transparent QMS program through the ISO 13485:2016 certification.

 

If you are curious to know more about this certification, read on as we discuss more on the benefits of the ISO 13485:2016 certification.

 

What is the ISO 13485:2016 Standard?

 

ISO certification logoThe ISO 13485:2016 standard specifies requirements for a quality management system where an organization or company must demonstrate its ability to provide medical devices and related services that consistently meet customer and applicable regulatory requirements, such as sanitation in the work environment to ensure product safety.

It encompasses a broad range of organizations involved in the medical device industry. These include: design and development, production, storage and distribution, installation, or servicing of a medical device and associated activities.

 

How does this certification help AIP serve the medical market?

ISO 13485:2016 reflects our strong commitment to continual improvement and gives customers confidence in our ability to bring safe and effective products to the medical market.

 

We know that product durability and cleanliness are not just desirable within the medical industry, they’re essential. The ISO 13485:2016 compliance highlights our commitment to machining medical devices with quality custom plastic components.

 

We have been successfully audited by some of the most stringent OEMs in the orthopaedic and medical device industries. Our plastics are processed with strict hygienic procedures to ensure the highest level of sanitation down to the sub-molecular level.

 

At AIP, quality assurance is a norm not only for our customers but for ourselves. The ISO 13485:2016 certification is designed to integrate with our existing quality management system. With it, we can ensure our customers the highest-level of safety and performance for their medical machined parts.

 

What about AIP Precision Machining allows us to achieve ISO 13485:2016 certification?

 
“Anyone who tells you that it is not about the people is wrong,” said MacDonald. “While leadership provided the vision and desire to seek out ISO 13485:2016 certification, our dedicated team at AIP went the distance and got us over the finish line. It is our team who will maintain and continually enhance those key processes to make us better every day at meeting the needs of our valued customers.

 

Want to learn more about machining plastics for medical devices?

Read our blog on ways to ensure sterilization in plastic machined medical applications:

 

Read More

 

Follow AIP Precision Machining on Linkedin

linkedin logo

An Informational Brief on Polymer Machining

 

Among the many plastics AIP precision machines, PSU (Polysulfone) is a high-performance thermoplastic made from UDEL Resin.  This particular thermoplastic is able to retain its properties in temperatures ranging from -150°F (-100°C) to 300°F (150°C).  This precision machined plastic also has excellent radiation stability, chemical resistance as well as hydrolysis resistance for continuous use in hot water and steam.

 

In many applications, PSU is used over stainless steel parts or aluminum as the material is seven times lighter than stainless steel and can also be steam-cleaned in areas like chemical labs.  For this reason, it has a wide range of uses in the following industries:  aerospace and defense, medical and life sciences as well as specialized industrial applications.

 

Our latest machining guide discusses what goes into machining PSU and how its considerations differ from other manufacturing options such as metal machining, injection molding, and 3D printing.

 

How does AIP approach PSU and its machining process? To start, we’ll explain the difference between machining PSU, a thermoplastic, and machining thermosets.

 

Machining Thermoplastics vs Thermosets

 

We’ve already said that PSU is a thermoplastic, but what does that mean exactly?

 

All polymers can more or less be divided into two categories: thermoplastics and thermosets. The main difference between them is how they react to heat. Thermoplastics like PSU, for example, melt in heat, while thermosets remain “set” once they’re formed. Understanding the technical distinction between these types of materials is essential to CNC machining them properly.

 

The table below outlines the main properties of thermoplastics versus thermosets:

 

Thermoplastics

Thermosets

  • Good Resistance to Creep
  • Soluble in Certain Solvents
  • Swell in Presence of Certain Solvents
  • Allows for Plastic Deformation when Heated
  • High Resistance to Creep
  • Insoluble
  • Rarely Swell in Presence of Solvents
  • Cannot Melt

 

From there, thermoplastics are categorized into amorphous or crystalline polymers per the figure below:

 

Source: https://www.ejbplastics.com
 

Based off of the chart, PSU is an amorphous, high performance engineering thermoplastic, meaning its molecular structure is randomly formed.  The result is that amorphous materials soften gradually with temperature increase, making them easy to thermoform.

 

Properties of PSU (Polysulfone)

 

Amorphous thermoplastics are usually translucent in color, but the gradients vary.  PSU, for instance, is amber semi-transparent.

 

Since they are isotropic in flow, they have better dimensional stability than semi-crystalline plastics and are less likely to warp.  Thermoplastics like PSU offer superior impact strength and are best used for structural applications.

 

The materials bond well using adhesives. They also tend to offer excellent resistance to hot water and steam, good chemical resistance, stiffness and strength. PSU and PEI are especially good examples of amorphous thermoplastics offering these qualities.

 

Machining PSU (Polysulfone)

 

Annealing PSU

 

Like many amorphous thermoplastics, PSU is especially sensitive to stress-cracking, so stress-relieving through an annealing process is highly recommended before machining.  Annealing PSU greatly reduces the likelihood that surface cracks and internal stresses will occur from the heat generated. Post-machining annealing also helps to reduce stresses that could potentially contribute to premature failure.  AIP uses computer controlled annealing ovens for the highest quality precision machining of PSU and other thermoplastics.

 

Machining PSU

 

Non-aromatic, water-soluble coolants are most suitable for ideal surface finishes and close tolerances. These include pressurized air and spray mists. Coolants have the additional benefit of extending tool life as well.

 

Many metal shops use petroleum-based coolants, but these types of fluids attack amorphous thermoplastics like PSU. Many past experiences have shown parts going to customer without cracks, only to develop cracks over time due to exposure to metal machine shop fluids. Be sure to use a facility like AIP who only machines polymers.

 

Preventing Contamination

 

Contamination is a serious concern when machining polymer components for technically demanding industries such as aerospace sciences. To ensure the highest level of sanitation down to the sub-molecular level, AIP Precision Machining designs, heat-treats, and machines only plastics with any sub-manufactured metalwork processed outside our facility.  This allows us to de-risk the process from metallic cross contamination.

 

PSU (Polysulfone) Machining Guide Supportive Information

Amorphous Materials Guide

 

Explore Our Inventory

or request a quote here.

Follow AIP Precision Machining on Linkedin

linkedin logo

Key Moments in Aircraft & Aerospace Innovation

 

Aviation technology has come a long way to get to where it is today. Over the course of the last century countless test flights, thousands of blueprints, and endless research from passionate minds have propelled the evolution of aircraft and aerospace technologies. Read on to discover how aviation materials have shifted to create a better, safer, and more efficient flight experience.

 

The Pioneers of Aviation

 

For much of human history, we have been fascinated with taking flight. The ancient Greeks contemplated sprouting wings in myths like Icarus and Daedalus – the boy who flew too close to the sun with wax and feather wings. Leonardo Da Vinci sketched flying machines that were way ahead of Renaissance times. It all came to fruition in 1857 when Félix du Temple de la Croix, a French Naval officer, received a patent for a flying machine. By 1874, he had developed a lightweight steam-powered monoplane which flew short distances under its own power after takeoff from a ski-jump.  Finally, in 1903, the Wright Brothers made the first controlled, powered, and sustained flight near Kitty Hawk, North Carolina. The Wright Flyer featured a lightweight aluminum engine, wood and steel construction, and a fabric wing warping. According to the U.S. Smithsonian Institution, the Wright brothers accomplished the “world’s first successful flights of a powered heavier-than-air flying machine.”

 

 

Just 12 years later, the first all-metal airplane (Junkers J1), built by Hugo Junkers (1859-1935), took flight in 1915. Previously, aircraft experts believed that airplanes can only fly with light materials such as wood, struts, tension wires, and canvas. Junkers thought differently and believed that heavier materials like metal were necessary to transport passengers and goods.

 

The Golden Age

 

The Roaring 20’s ushered in airplane racing competitions, which led aircraft designers to focus on performance. Innovators, such as Howard Hughes, found that monoplanes (aircraft with one pair of wings) were more aerodynamic in comparison to biplanes, and that frames made with aluminum alloys were capable of withstanding extraordinary pressures and stresses. Due to its lightweight properties, aluminum also made its way into the internal fittings of the aircraft decreasing the weight and allowing for a more fuel-efficient design.

 

In 1925, Henry Ford acquired the Stout Metal Airplane Company, utilizing the all-metal design principles proposed by Hugo Junkers, Ford developed the Ford Trimotor, nicknamed the “Tin Goose.” The “Tin Goose” propelled the race to design safe and reliable engines for airline travel. A few years later, Henry Ford’s Trimotor NC8407 became the first airplane flown by Eastern Air Transport, a leading domestic airline in the 1930s flying routes from New York to Florida. This positioned metal as the primary material for domestic aircraft, and eventually military applications with the onset of WWII.

 

 

Plastic’s Mettle: Wartime Materials Take Flight

 

By the 1930’s, the use of wood became obsolete and all-metal aircrafts were produced for their durability. Imperial Airways, known today as British Airways, made headway in the air travel industry with advertisements of luxury and adventure to cross borders. However, those borders were sealed off with the breakout of WWII. In 1939, Imperial Airways, a private commercial airline, was ordered to operate from a military standpoint at Bristol Airport.  Across the Atlantic, engineers focused their efforts on building aircraft meant specifically for military strategy – strength, durability, agility, and weaponry.  The Boeing P-26 “Peashooter” entered service with the United States Army Air Corps as the first all-metal and low-wing monoplane fighter aircraft. Known for its speed and maneuverability, the small but feisty P-26 formed the core of pursuit squadrons throughout the United States.

 

 

In times of war, there are often significant advancements in material usage, weaponry, and machinery. World War II was no different. Plastics entered the scene during World War II, starting with the replacement of metal parts for rubber parts in U.S. aircraft after Japan limited metal trade with the United States. Following that, plastics of higher grades began to replace electrical insulators and mechanical components such as gears, pulleys, and fasteners. Aircraft manufacturers began to replace aluminum parts with plastics as they were lighter and thus more fuel efficient than aluminum.

 

The Race for Space

 

Lighter and more fuel efficient were the key words following World War II as nations turned their attention to the skies and beyond. The space program in the 1960’s brought together illustrious minds to solve the seemingly impossible feat of being the first country to put mankind on the moon, thus, the great race for space began. Aircraft were now going beyond the sky and NASA scientists knew they were dealing with new territory in aero innovation. They needed a material that could break the Earth’s atmosphere and carry a hefty amount of fuel, while protecting the spacecraft’s crew from extreme temperatures. NASA scientists turned to plastics, specifically Kevlar and nylon. Layers of nylon and other insulators were wrapped under the body of the spacecraft to protect the crew from the extreme temperatures of space. Both of these plastics are still staples in the aerospace industry – keeping the Hubble telescope and many other satellites scanning humanity’s charted and uncharted expanse.

 

 

Plastics of the Future

 

Plastics continue to lead the future of materials in aerospace and aviation industries for their durability, precision, and ingenuity. For example, in 2009, the 787-8 Dreamliner made its first maiden flight, becoming the first aircraft to have wings and fuselage made from carbon-fiber plastics. Besides being lightweight, plastics offered increased safety with their resistance to high impact, and their proven ability to withstand chemically harsh environments. This proved plastics an invaluable material when compared to alternative material choices like glass or metal.

 

 

Starting in the 1970s, plastics began to play a more crucial part in the defense and military industry, especially in stealth aircraft. The U.S. Air Force saw the potential of plastics when they learned that plastics could absorb radar waves. The added benefit of reduced radar signature makes plastics ideal for creating stealthy aircraft. Plastics continue to contribute to innovation in the defense industry, especially with stealth fabrics and other composite materials which can virtually create invisibility to radars in the near future.

 

Aside from plastics becoming increasingly popular for use in the defense and military sector, high grade plastics like PEEK are highly favorable for space travel due to its ability to function in hostile environments, critical in space exploration. Plastics are even being researched for lightweight radiation shielding for the International Space Station and flights to Mars.

 

At AIP, we’re proud to be a continued part of aviation and aerospace advancements and we look forward to engineering solutions for the next frontier. In fact, at the time this article was written, we are AS9100D:2016 certified, which means we meet the high-quality standards of applications in the aerospace industry. In addition, we are also ISO 13485:2016, ISO 9000:2015, FDA audited, and ITAR certified. Above call, we strive to create genuine relationships with our customers to deliver mission critical components with promise. To learn how we can help you, contact us today.

 

Interested to learn more? Read “Plastics in Aerospace: The Secret to Fuel-Efficient Aircraft

 

Explore Our Inventory

or request a quote here.

Follow AIP Precision Machining on Linkedin

linkedin logo

An Informational Brief on Polymer Machining

 

Kynar®, Polyvinylidene Difluoride (PVDF) is a specialty fluoropolymer thermoplastic known for its ease of processing and its versatility in a variety of applications.  PVDF’s manufacturing not only ensures durability in its utility, but also delivers an innate resistance to acids, bases, high temperatures, and solvents.  Harsh industrial environments are no match for PVDF parts, which is why it is commonly used in environments requiring extreme resistance to a broad range of chemicals.

 

Additional demand for fluoropolymers like Kynar® PVDF is driven by the increasing trend of specialized, small-batch production for customized parts and components. Companies developing prototypes find it extremely convenient to have access to a fluoropolymer part manufacturer such as AIP.  Furthermore, AIP’s experience with custom-engineering plastics ensures our customers’ evolving needs are always met with the same level of innovation and excitement for creating new ways to deliver value in fluoropolymer applications.

 

Our latest machining guide discusses what goes into machining PVDF and how its considerations differ from other manufacturing options such as metal machining, injection molding, and 3D printing.

 

How does AIP approach PVDF and its machining process? To start, we’ll explain the difference between machining PVDF, a thermoplastic, and machining thermosets.

 

Machining Thermoplastics vs Thermosets

 

We’ve already said that PVDF is a thermoplastic, but what does that mean exactly?

 

All polymers can more or less be divided into two categories: thermoplastics and thermosets. The main difference between them is how they react to heat. Thermoplastics like PVDF, for example, melt in heat, while thermosets remain “set” once they’re formed. Understanding the technical distinction between these types of materials is essential to CNC machining them properly.

 

What type of thermoplastic is PVDF in particular? PVDF is a semi-crystalline, high purity engineering thermoplastic, meaning its molecular structure is highly ordered.

 

Properties & Grades of Machined Kynar® (PVDF)

 

As a thermoplastic, Kynar® PVDF offers industrial-grade resistance to pH changes due to varying thermal conditions, as well as solvent-resisting capabilities. This can be an advantage in petrochemical industries where fluoropolymer parts are in contact with or exposed to bursts of gases, oil or detergents.

 

It should also be noted that Kynar® PVDF is known for its high degree of crystallinity, which results in a stronger and strain-resisting component. Add to that a natural resistance to fungus, ozone and weather, which makes Kynar® PVDF a great fluoropolymer for coatings and manufactured parts exposed to the elements.

 

Finally, adding to its versatile performance in industrial environments, Kynar® PVDF provides excellent resistance to nuclear radiation, allowing it to be used in both Power Generation and military applications.

 

AIP offers a range of Kynar® and PVDF grades that provide different strength, thermal stability, and corrosion resistance and can help you select the best grade of PVDF for your application..

 

Machining Kynar® (PVDF)

 

Annealing PVDF

 

The process of annealing and stress-relieving PVDF reduces the likelihood of surface cracks and internal stresses occurring in the material. Post-machining annealing also helps to reduce stresses that could potentially contribute to premature failure.

 

Machining Kynar

 

PVDF offers ease of machining and tight tolerances due to its inherent strength, toughness and dimensional stability. Machining PVDF isn’t too different from machining metals as a result of this; pretend you’re machining brass. Unlike metal, though, PVDF (like all thermoplastics) will deform if you hold it too tightly as it yields easily.

 

We generally recommend Tungsten Carbide Alloy Tooling. Also, keep the part very cool and support it well.

 

We also suggest non-aromatic, air-based coolants to achieve optimum surface finishes and close tolerances. Coolants have the additional benefit of extending tool life as well.

 

Case in point, Kynar® PVDF can be manufactured into industrial equipment components that may include piping and tubing, valves, tanks, nozzles, and fittings—among many other formats. It can also be combined with other materials, helping customers innovate and create new product classes with utility that exceeds its original applications.

 

Preventing Contamination

 

Contamination is a serious concern when machining polymer components for technically demanding industries such as aerospace sciences. To ensure the highest level of sanitation down to the sub-molecular level, AIP Precision Machining designs, heat-treats and machines only plastics, with any sub-manufactured metalwork processed outside our facility.  This allows us to de-risk the process from metallic cross contamination.

 

Kynar® (PVDF) Machining Guide: Supportive Information

 

Chemical Resistant Materials

 

Explore Our Inventory

or request a quote here.

Follow AIP Precision Machining on Linkedin

linkedin logo

 

Ask the Plastics Professionals at AIP Precision Machining!

 

Do you know why AIP Precision Machining includes stress-relieving and annealing plastics as part of our machining process? We’ve talked about this a bit in our plastic machining guides (like our polymer machining brief on RADEL, but this post serves as a more thorough explanation of annealing does to improve your machined parts.

 

What’s the purpose of stress relieving and annealing plastics, then? Read on to learn the answer from the plastics professionals at AIP Precision Machining.

 

What is annealing, and how does AIP anneal its plastic parts?

 

Let’s start with the basic definition of annealing: it’s a heat treatment that changes the properties of a material to make it easier to machine. Annealing does this by increasing ductility and reducing hardness for the material.

 

AIP Precision Machining has programmed annealing ovens for plastics that heat the material above its recrystallization temperature. By maintaining the heat at that specific point, the structure of the material changes to become finer and more uniform. This process relieves internal stresses in the material.

 

The final part of annealing is allowing the material to cool back down once after it’s been heated for a suitable amount of time. Proper annealing requires precise temperatures and timing control to accomplish the right result, which is why AIP uses computer controlled annealing ovens for plastics.

 

Why is annealing & stress-relieving crucial for plastics?

 

While not every machined component has to rely on annealing, we at AIP believe it is an important part of the plastic machining process for several reasons. For one thing, it reduces stress in the material.

 

Plastics that experience internal stress can turn out warped or cracked, have inferior physical properties, or finish with unexpected changes in their part dimensions. Obviously, we want to avoid this as much as possible.

 

Reducing stress enhances the mechanical and thermal properties of a material by limiting the opportunity for cracking and other issues like the ones above. Since stress build-up can lead to part failure or reduced performance, stress-relieving improves the overall quality of your product.

 

By doing this, annealing extends the life of your machined plastic parts and components.

 

Is the process of annealing plastics the same for different materials?

 

Not at all. Some engineering plastics like ULTEM and TORLON benefit enormously from post-machining annealing. At AIP, proper annealing of TORLON can require more than seven days in special ovens!

 

Other materials that will undergo a lot of machining time, like some applications of PEEK, can require more intermediate annealing steps to make sure they maintain critically tight tolerances and flatness.

 

That means it’s essential for your machinist to know what plastic material you’re working with and what particular needs it has. Be sure you’re working with an experienced plastics manufacturer like AIP or else you risk having a lower quality product.

 

With over 35+ years of experience working with hundreds of polymers and composites, we’re more than just familiar with the machining process. We’re ready to handle any geometry and any challenge.

 

Want to Learn More about Plastic Machining?

You can follow AIP Precision Machining on LinkedIn, Twitter, Facebook or Google+, so that you can keep up with the latest from the plastics professionals!

Follow AIP Precision Machining on Linkedin

linkedin logo

 

How Aluminum Got Dethroned by Thermoplastics in Aerospace

 

Cup holders. Magazines. Suit cases. Aircraft engines. Here’s a riddle, what do these items all have in common? If you’re an aircraft operator, the answer is obvious: they all add weight, making them a drain on your fuel costs.

 

If weight is one of the main operating costs of an aircraft, then it’s no surprise that airlines want to lose a few pounds. Over the last 35 years, AIP has witnessed firsthand the incredible weight savings that can be gained from using lightweight polymers and composites for aerospace applications.

 

How Airlines “Slim Down” Operating Costs


How much can an ounce cost you? Plenty. In the case of United Airlines, removing a single ounce from its in-flight magazine has translated to saving $290,000 a year. Yes, a single ounce can hit an airline with up to six digits in costs.

 

If thinner paper can have such an impact on your bottom line, then you can imagine the significant cost savings that can come from manufacturing lighter aerospace components. What’s the most lightweight solution for aircraft operators today? We have one word for you: plastics.

 

What Makes Plastics the Secret to Aircraft Fuel-Efficiency


Aluminum was popular during the “Golden Age of Aviation” because of its strength and durability as well as its lightness when compared to other metals like steel. As a result, many aircraft components have traditionally been metal, from aircraft interiors, to landing gear, aircraft engines and structural components.

 

Now consider the fact that polymer and composite materials can be up to ten times lighter than metal. It’s no wonder that as more thermoplastic materials come on the market and new manufacturing opportunities arise, metal replacement has been seen as one of the best opportunities to reduce airline weight.

 

How big is the impact of switching from aluminum to plastic parts like PEEK and ULTEM in aerospace applications? Operators can earn weight savings of up to 60%. This translates to lower lifetime fuel costs, reduced emissions and extended flight range for operators.

 

“Weighing” the Option of Plastics in Aerospace


Weight alone is a massive reason to consider thermoplastics for aerospace, but weight isn’t the only factor at play in material selection.

 

After all, wood is lighter than metal, but there’s a reason we don’t build spruce airframes like the first plane from the Wright brothers: it wouldn’t be safe today to fly a wooden plane! Aerospace components need to be able to survive in corrosive, harsh environments as well as provide resistance to high temperatures.

 

In other words, it’s crucial that your mission-critical components aren’t just lightweight, but also high-performing.

 

At AIP, we carefully apply our decades of material expertise to select the right material for your application’s needs. Remember that your aerospace plastics manufacturer should understand the unique demands of your industry and your application, and have experience machining the material you require.

 

Want to learn more about how AIP reduces costs for aircraft operators?

Read how machined polymer components can take a load off aircraft interiors in our aerospace case study.

 

Download Our Case Study

Follow AIP Precision Machining on Linkedin

linkedin logo

An Informational Brief on Polymer Machining

 

Machining RadelRADEL is a PPSU (or Polyphenylsulfone) widely considered to be the highest-performing of Solvay’s sulfone polymers. It’s no surprise then that we’ve regularly machined RADEL at AIP Precision Machining over the past three decades.

 

With superior impact strength and outstanding resistance to stress cracking, RADEL offers exceptional hydrolytic stability and toughness across a wide temperature range, making it a favorite of the medical, electronics manufacturing, and aerospace industries.

 

AIP has over 35 years of experience machining complex components from RADEL and various other thermoplastic materials. We are providing this Machining RADEL as yet another insightful technical brief about our polymer component manufacturing process, and how it differs from that of metal machining, injection molding, or 3D printing.

 

 

Machining Thermoplastics vs Thermosets

 

Plastic CNC machining is affected by what type of material you’re machining. Technical expertise is key to polymer machining, which is why you have to know the polymer structure and properties of RADEL before machining it.

 

There are two basic types of polymers: thermoplastics and thermosets. Thermoplastics soften in heat and become more fluid, while thermosets cross-link during curing, which eliminates the risk of a product re-melting in heat. Since these categories react differently to chemicals and temperature, it’s important to know that RADEL is a thermoplastic.

 

To be specific, RADEL PPSU is an amorphous, high-performance thermoplastic that is lightweight, available in bone-white or black colors, and can be either transparent or opaque. Like other amorphous thermoplastics, such as ULTEM, RADEL is thermoform capable, translucent and easily bonded with adhesives or solvents.

 

 

Properties & Grades of Machined RADEL

 

RADEL’s reputation as a high-performance thermoplastic is well deserved. RADEL PPSU has an impressive heat deflection temperature of 405°F (207°C) and is inherently flame retardant with low NBS smoke evolution, making it an ideal material choice for aircraft interiors. In addition, its retention of mechanical properties is superior to all other amorphous transparent polymers.

 

With improved impact and chemical resistance over PSU and PEI, RADEL PPSU has been tested for notched izod impact resistance as high as 13 ft.-lbs/in. It can endure over 100 joules of force without shattering, even with repeated exposure to moisture and extreme temperatures.

 

These inherent qualities allow RADEL PPSU to withstand unlimited steam autoclaving and provide RADEL with excellent resistance to EtO, gamma, plasma and chemical sterilizations as well. Unsurprisingly, its extreme thermal properties make RADEL ideal for reusable medical instruments and other applications where sterilization is key.

 

Not all grades of RADEL PPSU share the same exact properties, of course. Choosing the grade of your material that best meets your needs is an important part of AIP Precision Machining’s expert material knowledge.

 

One grade of RADEL PPSU we machine regularly at AIP Precision Machining is RADEL R5500.

 

RADEL R5500

RADEL R5500 is a unique polymer grade that meets the stringent aircraft flammability requirements of 14CFR Part 25, while also being a biocompatible, medical-grade resin that is FDA and NSF approved for food and beverage contact. From that, it’s clear that RADEL R5500 can be used for a wide range of applications, whether it’s for aircraft interiors, electronic burn-in sockets or surgical instruments. RADEL R5500 can be polished to a mirror finish and is available in both opaque and transparent colors.

 

 

Machining RADEL PPSU

 

Annealing RADEL PPSU
RADEL PPSU, like many polymers, can be received in the form of rods, sheets, tube or film. As we mentioned before, amorphous thermoplastics like RADEL are especially sensitive to stress-cracking, so stress-relieving through an annealing process is highly recommended before machining.

 

Annealing RADEL greatly reduces the likelihood that surface cracks and internal stresses will occur from the heat generated. Post-machining annealing also helps to reduce stresses that could potentially contribute to premature failure.

 

If the machine shop you are working with does not have a computer controlled annealing oven for plastics, then “head for dee hills” as they are obviously not RADEL machining experts.

 

Machining RADEL PPSU

Non-aromatic, water-soluble coolants are most suitable for ideal surface finishes and close tolerances. These include pressurized air and spray mists. Coolants have the additional benefit of extending tool life as well.

 

Many metal shops use petroleum-based coolants, but these types of fluids attack amorphous thermoplastics like RADEL PPSU. Many past experiences have shown parts going to customer without cracks, only to develop cracks over time due to exposure to metal machine shop fluids. Be sure to use a facility like AIP who machines polymers and only polymers.

 

Preventing Contamination

Contamination is a serious concern when machining polymer components for technically demanding industries such as aerospace and medical. To ensure the highest level of sanitation down to the sub-molecular level, AIP Precision Machining designs, heat-treats, and machines only plastics, with any sub-manufactured metalwork processed outside our facility. This minimizes the potential for metallic cross-contamination.

 

 

RADEL Machining Guide: Supportive Information

 

Medical Sector Biomaterials Guide

Energy Sector Materials Guide

Aerospace Sector Materials Guide

Amorphous Materials

Explore Our Inventory

 

or request a quote here.

Follow AIP Precision Machining on Linkedin

linkedin logo

An Informational Brief on Polymer Machining

 

AIP Precision Machining has worked with many thermoplastics over the past three decades, including TORLON: a PAI, or polyamide-imide, engineered by Solvay Specialty Polymers.

 

Due to its reliable performance at severe levels of temperature and stress, TORLON is ideal for critical mechanical and structural components of jet engines, automotive transmissions, oil recovery, off-road vehicles and heavy-duty equipment.

 

AIP has over 35 years of experience machining complex components from TORLON and various other thermoplastic materials. We are providing this Machining TORLON Guide as yet another insightful technical brief about our polymer component manufacturing process, and how it differs from that of metal machining, injection molding, or 3D printing.

 

Plastic CNC Machining

Before discussing the process of machining TORLON, it’s important to understand exactly what plastic machining is.

 

CNC (Computer Numerical Control) machining is a process in the manufacturing sector that involves the use of computers to control machine tools. In the case of plastic machining, this involves the precise removal of layers from a plastic sheet, rod, tube or near net molded blank.

 

The early history of CNC machining is almost as complex as a modern CNC system. The earliest version of computer numerical control (CNC) technology was developed shortly after World War II as a reliable, repeatable way to manufacture more accurate and complex parts for the aircraft industry. Numerical control—the precursor to CNC—was developed by John Parsons as a method of producing integrally stiffened aircraft skins.

 

Parsons, while working at his father’s Traverse City, Michigan-based Parsons Corp., had previously collaborated on the development of a system for producing helicopter rotor blade templates. Using an IBM 602A multiplier to calculate airfoil coordinates, and inputting this data to a Swiss jig borer, it was possible to produce templates from data on punched cards.

 

Parsons’ work lead to numerous Air Force research projects at the Massachusetts Institute of Technology (MIT) starting in 1949. Following extensive research and development, an experimental milling machine was constructed at MIT’s Servomechanisms Laboratory.

 

Due to the many different kinds of polymers and composites, it’s important to have strong technical expertise of polymer materials when machining plastic components; some plastics are brittle, for example, while others cut similarly to metal. The challenge of plastics is their wide range of mechanical and thermal properties which result in varying behavior when machined. Therefore, it’s important to understand the polymer structure and properties of TORLON if you’re machining it.

 

Thermoplastics vs Thermosets

When it comes to polymers, you have two basic types: thermoplastics and thermosets. It’s crucial to know which one you’re working with due to distinct differences between how these two main polymer categories react to chemicals and temperature.

 

Thermoplastics soften when heated and become more fluid as additional heat is applied. The curing process is completely reversible as no chemical bonding takes place. This characteristic allows thermoplastics to be remolded and recycled without negatively affecting the material’s physical properties.

 

They possess the following properties:

• Good Resistance to Creep

• Soluble in Certain Solvents

• Swell in Presence of Certain Solvents

• Allows for Plastic Deformation when Heated

 

Thermosets plastics contain polymers that cross-link together during the curing process to form an irreversible chemical bond. The cross-linking process eliminates the risk of the product re-melting when heat is applied, making thermosets ideal for high-heat applications such as electronics and appliances.

 

They possess the following properties:

• High Resistance to Creep

• Cannot Melt

• Insoluble

• Rarely Swell in Presence of Solvents

 

Phenolic, Bakelite, Vinyl Ester and Epoxy materials would be considered examples of a thermoset, while ULTEM, PEEK, DELRIN and Polycarbonate materials are examples of thermoplastics.

The thermoplastic category of polymers is further categorized into Amorphous and Crystalline polymers per the figure below:

 

Machining Ultem
 

TORLON is considered an amorphous, high-performance thermoplastic. Most amorphous polymers are thermoform capable, translucent and easily bonded with adhesives or solvents.

 

 

Various Grades of Machined TORLON

 

What makes TORLON unique is how it possesses both the incredible performance of thermoset polyimides and the melt-processing advantages of thermoplastics. The compressive strength of (unfilled) TORLON PAI is double that of PEEK and 30% higher than that of ULTEM PEI. In fact, TORLON is considered the highest performing, melt-processible plastic.

 

High-strength grades of TORLON retain their toughness, high strength and high stiffness up to 275°C. This and its impressive wear resistance allow TORLON to endure in hostile thermal, chemical and stress conditions considered too severe for other thermoplastics. TORLON is also resistant to automotive and aviation fluids, making it a favorite of aerospace and automotive engineers.

 

One concern of using TORLON is that its moisture absorption rate is not as low as other high-performance plastics, so special care should be taken when designing components for wet environments.

 

There’s more than one particular type of TORLON PAI you can machine, and each has slightly different properties for perfecting this material’s use in different applications.

 

Here are several grades of TORLON PAI we machine regularly at AIP Precision Machining.

 

TORLON 4203

TORLON 4203 is the unfilled or natural grade of TORLON PAI that outperforms other grades with the best impact resistance and the most elongation. TORLON 4203 PAI can be used for a variety of applications but due to its good electrical properties, it is commonly machined for electronic equipment manufacturing, valve seals, bearings and temperature test sockets.

 

TORLON 4301

TORLON 4301 is a wear-resistant grade of TORLON PAI containing PTFE and graphite. It has high flexural and compressive strength with a low coefficient of friction, as well as good mechanical properties. Typical applications of 4301 are anything that requires strength at high temperature with wear resistance and low friction. This material is useful for parts such as thrust washers, spline liners, valve seats, bushings, bearings and wear rings.

 

TORLON 4XG

TORLON 4XG is a 30% glass-reinforced extruded grade of PAI well suited to higher load structural or electronic applications. When you need a high degree of dimensional control, this grade offers the high-performance you need. Various uses of TORLON 4XG include burn-in sockets, gears, valve plates, impellers, rotors, terminal strips and insulators, among others.

 

TORLON 4XCF

TORLON 4XCF is a 30% carbon-reinforced extruded grade of PAI that has the lowest coefficient of thermal expansion and the most impressive fatigue resistance of all plastic materials. This uncommon grade works well as a replacement for metal applications as well as mission-critical aerospace components, in addition to impellers, shrouds and pistons.

 

 

Machining TORLON

 

Annealing TORLON
TORLON PAI can be received in the form of rods, sheets, tube or film. Stress-relieving before machining through an annealing process is crucial, as it reduces the likelihood that surface cracks and internal stresses will occur from the heat generated. This also helps prevent any warping or distortion of your plastic materials.

 

TORLON additionally benefits from post-machining annealing to reduce any stress that could contribute to premature failure. Extruded TORLON parts, such as those machined from TORLON 4XCF and TORLON 4XG, benefit from an additional cure after machining to further enhance wear resistance; this is unique to PAI. Proper annealing of Torlon can require more than seven days in special ovens at AIP.

 

If the machine shop you are working with does not have a computer controlled annealing oven for plastics, then “head for dee hills” as they are obviously not TORLON machining experts.

 

Machining TORLON

An important consideration to have when machining TORLON PAI is how abrasive it is on tooling. If you’re machining on a short run, carbide tooling can be used, but polycrystalline (PCD) tooling should be considered for lengthier runs, machining for tight tolerance and any time you are working with reinforced grades.

 

Another thing to keep in mind when machining extruded TORLON shapes is that they have a cured outer skin, which is harder than interior sections. The outer skin offers the best wear and chemical resistance. If wear resistance and chemical resistance needs to be optimized, extruded TORLON should be re-cured.

 

TORLON PAI will nearly always require the use of coolants due to its stiffness and hardness. Non-aromatic, water-soluble coolants are most suitable for ideal surface finishes and close tolerances. These include pressurized air and spray mists. Coolants have the additional benefit of extending tool life as well.

 

Many metal shops use petroleum-based coolants, but these types of fluids attack TORLON. Many past experiences have shown parts going to customer without cracks, only to develop cracks over time due to exposure to metal machine shop fluids. Be sure to use a facility like AIP who machines polymers and only polymers.

 

Preventing Contamination

Contamination is a serious concern when machining polymer components for technically demanding industries such as aerospace and medical. To ensure the highest level of sanitation down to the sub-molecular level, AIP Precision Machining designs, heat-treats and machines only plastics, with any sub-manufactured metalwork processed outside our facility.

 

 

TORLON Machining Guide: Supportive Information

Medical Sector Biomaterials Guide

Energy Sector Materials Guide

Aerospace Sector Materials Guide

Amorphous Materials

 

 

Explore Our Inventory

 

or request a quote here.

Follow AIP Precision Machining on Linkedin

linkedin logo

Thermosets vs Thermoplastics

Your Brief Guide to Polymer Materials

 

When it comes to polymers, you have two basic types: thermoplastics and thermosets. When machining plastic, it’s crucial to know which one you’re working with due to distinct differences between how these two main polymer categories react to chemicals and temperature.

 

Thermoplastics soften when heated and become more fluid as additional heat is applied. The curing process is completely reversible as no chemical bonding takes place. This characteristic allows thermoplastics to be remolded and recycled without negatively affecting the material’s physical properties. 

 

Thermoplastics possess the following properties:

  • • Good Resistance to Creep
  • • Soluble in Certain Solvents
  • • Swell in Presence of Certain Solvents
  • • Allows for Plastic Deformation when Heated

 

Thermosets contain polymers that cross-link together during the curing process to form an irreversible chemical bond. The cross-linking process eliminates the risk of the product re-melting when heat is applied, making thermosets ideal for high-heat applications such as electronics and appliances.

 

Thermosets possess the following properties:

  • • High Resistance to Creep
  • • Cannot Melt
  • • Insoluble
  • • Rarely Swell in Presence of Solvents

 

Phenolic, Bakelite, Vinyl Ester and Epoxy materials would be considered examples of a thermoset, while ULTEM, PEEK, TORLON and Polycarbonate materials are examples of thermoplastics.

 

The thermoplastic category of polymers is further categorized into Amorphous and Crystalline polymers per the figure below:

 

 

Most amorphous polymers are thermoform capable, translucent and easily bonded with adhesives or solvents. One example of this would be TORLON.

 

Semi-crystalline polymers are difficult to bond or thermoform, but possess better chemical resistances, electrical properties and a low coefficient of fiction. An example of a semi-crystalline polymer would be PEEK.

 

Want to learn more about AIP’s polymer and composite materials?

or request a quote here.

Follow AIP Precision Machining on Linkedin

linkedin logo

Plastic CNC Machining

A Brief History of CNC Machining & Plastic Machining

 

An important part of working with any company is understanding what they do; at AIP Precision Machining, plastic CNC machining is what we’ve done best for the past 35 years.

 

CNC (Computer Numerical Control) machining is a process in the manufacturing sector that involves the use of computers to control machine tools. In the case of plastic machining, this involves the precise removal of layers from a plastic sheet, rod, tube or near net molded blank. This subtractive manufacturing differs from additive manufacturing techniques, such as 3D printing.

 

The History of CNC Machining

The early history of CNC machining is almost as complex as a modern CNC system. The earliest version of computer numerical control (CNC) technology was developed shortly after World War II as a reliable, repeatable way to manufacture more accurate and complex parts for the aircraft industry. Numerical control—the precursor to CNC—was developed by John Parsons as a method of producing integrally stiffened aircraft skins.

 

Parsons, while working at his father’s Traverse City, Michigan-based Parsons Corp., had previously collaborated on the development of a system for producing helicopter rotor blade templates. Using an IBM 602A multiplier to calculate airfoil coordinates, and inputting this data to a Swiss jig borer, it was possible to produce templates from data on punched cards.

 

Parsons’ work lead to numerous Air Force research projects at the Massachusetts Institute of Technology (MIT) starting in 1949. Following extensive research and development, an experimental milling machine was constructed at MIT’s Servomechanisms Laboratory.

 

CNC machining can be used for a wide variety of materials, but at AIP Precision Machining, we solely machine polymers and composites. This significantly reduces the threat of metallic cross contamination in our products, allowing us to provide the most hygienic devices and components for our clients.

 

The Complexity of Polymer Machining

There are benefits to machining polymer components over metallic materials, but it’s a mistake to assume both machine the same way. Due to the many different kinds of polymers and composites, it’s important to have strong technical expertise of polymer materials when machining plastic components; some plastics are brittle, for example, while others cut similarly to metal.

 

The challenge of plastics is their wide range of mechanical and thermal properties which result in varying behavior when machined. Therefore, it’s important to understand the polymer structure and properties of a material if you’re machining it. Having expert material knowledge is essential for this reason, which is why AIP has it as one of our core offerings.

 

One example of this would be knowing if you’re machining a thermoset or a thermoplastic.

 

Here are a few polymer machining guides that discuss the specifics of plastic machining various materials:

 

Want to learn more about AIP Precision Machining’s capabilities?

Explore our extensive plastic machining capabilities here, or if you like, you can contact us to get a quote here.

Follow AIP Precision Machining on Linkedin

linkedin logo