An Informational Brief on Polymer Machining

 

Among the many polymer materials we machine at AIP, High Density Polyethylene (HDPE) is a common material choice for commercial polymer applications.  HDPE is part of the Polyethylene (PE) family of thermoplastic polymers with variable crystalline structure.

 

First developed in the 1950s by German and Italian scientists Karl Ziegler and Giulio Natta, PE has become one of the most widely produced plastics in the world.  Polyethylene comes in several compounds each with various applications: Low Density Polyethylene (LDPE), High Density Polyethylene (HDPE) and Ultrahigh Molecular Weight Polyethylene (UHMW) are some of the most well-known.

 

For example, you will find LDPE most likely in the grocery store as plastic wrap or grocery bags.  In contrast, HDPE, due to its high density, is much better suited for construction components like a drain pipe.  And UHMW can be machined into high performance applications for medical devices, bulletproof vests and industrial wear components.

 

In this machining guide, we will discuss what goes into machining HDPE and how its considerations differ from other manufacturing options such as metal machining, injection molding, and 3D printing.

 

A Brief History of Plastic CNC Machining

 

How does AIP approach HDPE and its machining process? To start, let’s explore what plastic machining is, specifically CNC machining.

 

CNC (Computer Numerical Control) machining is a process in the manufacturing sector that involves the use of computers to control machine tools. In the case of plastic machining, this involves the precise removal of layers from a plastic sheet, rod, tube or near net molded blank.

 

Shortly after World War II, the earliest version of CNC technology was developed as a dependable, repeatable way to manufacture more accurate and complex parts for the aircraft industry.  John Parsons is credited with developing numerical control – a method of producing integrally stiffened aircraft skins.

 

While working at the family-owned, Michigan-based business – Parsons Corp., John collaborated on the development of a system for producing helicopter rotor blade templates.  Using an IBM 602A multiplier to calculate airfoil coordinates, and inputting this data to a Swiss jig borer, it was possible to produce templates from data on punched cards.

 

In 1949 Parson’s templates were applied to Air Force research projects at MIT.  Following extensive research and development, an experimental milling machine was constructed at MIT’s Servomechanisms Laboratory.

 

Machining polymers and composites is a precise science that requires strong technical expertise.  For instance, some plastics are brittle, while others melt at a specific temperature.  These diverse mechanical and thermal properties result in varying behaviors when CNC machined.  Thus, it is imperative to understand the polymer structure and qualities of HDPE if you’re machining it.

 

Ever wonder about the differences in cost and process among 3D Printing, Injection Molding or Plastic Machining?

 

Check out our blog:
“Settling the Debate”

 

 

Properties of HDPE

 

HDPE is a high impact, high density crystalline thermoplastic.  It also has a low moisture absorption rate and good chemical and corrosion resistance.  Compared to its sister polymer LDPE, HDPE offers much greater impact resistance and tensile strength.  This polymer has a melt temperature of 266 F (130 C).  Its tensile strength is 20 MPa (2,900 PSI); to put this number into perspective, a slab of concrete may be able to withstand 3,000 PSI.

 

Oftentimes, people use HDPE in everyday home appliances and commercial containers.  Due to its strength and corrosion resistance, it’s a common candidate for garbage bins, laundry detergent cartons and cutting boards.  It is also safe to use for food contact such as milk cartons.

 

PE is available in sheet stock, rods, and even specialty shapes in a multitude of variants (LDPE, HDPE etc.), making it a good candidate for subtractive machining processes on a mill or lathe. However, colors are usually limited to white and black.

 

Machining HDPE

 

Annealing HDPE

Annealing greatly reduces the chance that surface cracks and deformation due to internal stresses will occur from the heat generated during machining HDPE. AIP uses computer controlled annealing ovens for the highest quality precision machining of all thermoplastics.  Talk to our engineers about any questions you have about the annealing of a specific polymer.

 

Machining HDPE

As a crystalline thermoplastic, HDPE can be machined at tight tolerances; remember dimensional stability and strength!  AIP recommends non-aromatic, water-soluble coolants because they are most suitable for ideal surface finishes and close tolerances. Keep in mind however that HDPE has a very low CTLE and therefore will move quite a bit with slight temperature changes.  Some examples are pressurized air and spray mists. Coolants have the additional benefit of extending tool life as well.

 

Some companies machine both metals and plastics, which has detrimental outcomes for clients. Many past experiences have shown parts going to customer without cracks, only to develop cracks over time due to exposure to metal machine shop fluids. Be sure to use a facility like AIP that only machines polymers.

 

Preventing Contamination

 

Contamination is a serious concern when machining polymer components for technically demanding industries such as aerospace sciences. To ensure the highest level of sanitation down to the sub-molecular level, AIP Precision Machining designs, heat-treats, and machines only plastics with any sub-manufactured metalwork processed outside our facility.  This allows us to de-risk the process from metallic cross contamination.

 

HDPE (High Density Polyethylene) Machining Guide: Supportive Information

 

Miscellaneous Materials Guide

ISO 13485:2016 Certification

ISO 9001:2015 Certification

Learn more about HDPE and its applications in other industries

 

Discover what HDPE can do

 

Follow AIP Precision Machining on Linkedin

linkedin logo

3D Additive Manufacturing vs CNC MachiningThere’s no doubt that plastics have become more and more popular in modern medicine. Short lead times are essential in this industry, and both 3D additive manufacturing and CNC machining provide fast production times. When is your medical application better suited for 3D printing, though, and when does precision plastic machining have the upper hand in plastic manufacturing?

 

There are a few key differences and similarities between these types of plastic manufacturing that you should keep in mind for your medical applications. It helps to have a basic understanding of each manufacturing process, first.

 

Subtractive vs Additive Manufacturing

Subtractive Manufacturing

CNC machining is a type of “subtractive manufacturing.” This means that the process generally begins with a solid block of plastic material which is cut or shaped into the desired product through “removing” excess material.

 

While CNC machining requires more initial setup than 3D printing, it offers repeatability, accuracy for both large and small parts, and a wide range of polymers and composites to choose from, as well as a variety of surface finishes. It scales easily between one-time jobs and high-volume production.

 

Additive Manufacturing

3D printing is “additive manufacturing,” which means the initial material is built layer by layer, rather than removed as in subtractive manufacturing. 3D printing creates three-dimensional objects from reading a digital file’s blueprint. When working with plastics, you’re primarily talking about FDM 3D printing. While FDM is widely considered the most quick and cost-effective way of producing custom thermoplastic parts and prototypes, it also has the lowest dimensional accuracy and resolution of any other 3D printing technology.

 

Another option for additive manufacturing is SLS 3D printing, which fuses together the particles of thermoplastic polymer powders. This version of 3D printing has higher accuracy than FDM; however, it comes at the cost of longer lead times, which can be expensive in the medical industry.

 

Choosing the Right Technology for Your Medical Application

As always, choosing the correct technology is dependent on your particular medical application. What you value in your completed product can help determine which style of plastics manufacturing works best for your needs. Some of your considerations should be:

 

Material Consultancy

Both CNC machining and additive manufacturing work with a wide variety of thermoplastics, but those plastics react to manufacturing in different ways. Some materials machine more easily than others, while certain thermoplastic materials are more prone to warping in 3D printing.

 

Your manufacturer should be familiar with your chosen material and be able to discuss the process of machining or 3D printing it with you. At AIP Precision Machining, we have 35+ years of material and machining expertise and we include consultancy as an integral part of our manufacturing process.

 

Mechanical Properties

CNC machining ultimately provides greater dimensional accuracy and better performing properties than additive manufacturing. Machined thermoplastics possess both great mechanical and thermal properties with fully isotropic behavior. If your product requires unique, strong design with critical tolerances, then FDM 3D printing may not be not ideal; this type of printing is inherently anisotropic, meaning it isn’t the best option for mechanically critical components.

 

Medical applications, in particular, have unique considerations that ought to be taken into account, both for choosing your initial material and determining how it ought to be manufactured.

 

Precision Tolerances

Precision CNC machining provides close tolerances for your applications with a fine, burr-free finish. In fact, 3D printed products for the medical field regularly go into CNC machining post-processing as a secondary step in order to accomplish better tolerances or a finishing cut, as FDM parts tend to have visible layer lines.

 

Extreme tolerances up to 0.002mm can be produced by AIP Precision Machining, which can be necessary in demanding industries such as the medical, aerospace and energy markets.

 

Quick Turnaround

Both CNC machining and 3D printing have quick turnarounds, especially when compared to injection molding. Machining designs are crafted on the same computer applications used by 3D printers, so there is no cost associated with design changes for either type of plastics manufacturing. However, when time is truly critical, 3D printed parts can be delivered in 24 hours. Quality and functional usefulness, in this case, may be sacrificed for expediency.

 

AIP Precision Machining can guarantee your complex polymers machined in as little as 10 business days, with quality assured from concept to completion.

 

Volume of Production

Smaller batches, such as 1-10 plastic components, can be more cost-effective if produced with additive manufacturing. This is because using a non-standard blank size increases the cost of machining. Plastic machining, however, easily scales between small and large outputs.

 

If you require a high-quality product that possesses extreme mechanical and thermal strength, it is worth precision machining for that reason alone.

 

The Final Consideration? Experience.

The medical field often has no room for error when it comes to implants, spinal devices and orthopedic equipment. This is why—no matter what type of plastic manufacturing you choose—you want to be sure you’re working with an expert who understands the importance of sterilization, biocompatibility, and other traits that may be necessary for your application.

 

AIP is FDA and ISO 13485:2016 registered and has been audited by some of the most stringent OEMs in the orthopedic and medical device industries. We process our plastics with strict hygienic procedures.

 

Whoever you work with, be sure they understand the needs of your industry and have the experience to prove it.

 

Click here to learn more about the utility of each technology with regard to precision efficiency, materials and more.

Or, request a quote with AIP Precision Machining here.

Follow AIP Precision Machining on Linkedin

linkedin logo

Plastic CNC Machining

A Brief History of CNC Machining & Plastic Machining

 

An important part of working with any company is understanding what they do; at AIP Precision Machining, plastic CNC machining is what we’ve done best for the past 35 years.

 

CNC (Computer Numerical Control) machining is a process in the manufacturing sector that involves the use of computers to control machine tools. In the case of plastic machining, this involves the precise removal of layers from a plastic sheet, rod, tube or near net molded blank. This subtractive manufacturing differs from additive manufacturing techniques, such as 3D printing.

 

The History of CNC Machining

The early history of CNC machining is almost as complex as a modern CNC system. The earliest version of computer numerical control (CNC) technology was developed shortly after World War II as a reliable, repeatable way to manufacture more accurate and complex parts for the aircraft industry. Numerical control—the precursor to CNC—was developed by John Parsons as a method of producing integrally stiffened aircraft skins.

 

Parsons, while working at his father’s Traverse City, Michigan-based Parsons Corp., had previously collaborated on the development of a system for producing helicopter rotor blade templates. Using an IBM 602A multiplier to calculate airfoil coordinates, and inputting this data to a Swiss jig borer, it was possible to produce templates from data on punched cards.

 

Parsons’ work lead to numerous Air Force research projects at the Massachusetts Institute of Technology (MIT) starting in 1949. Following extensive research and development, an experimental milling machine was constructed at MIT’s Servomechanisms Laboratory.

 

CNC machining can be used for a wide variety of materials, but at AIP Precision Machining, we solely machine polymers and composites. This significantly reduces the threat of metallic cross contamination in our products, allowing us to provide the most hygienic devices and components for our clients.

 

The Complexity of Polymer Machining

There are benefits to machining polymer components over metallic materials, but it’s a mistake to assume both machine the same way. Due to the many different kinds of polymers and composites, it’s important to have strong technical expertise of polymer materials when machining plastic components; some plastics are brittle, for example, while others cut similarly to metal.

 

The challenge of plastics is their wide range of mechanical and thermal properties which result in varying behavior when machined. Therefore, it’s important to understand the polymer structure and properties of a material if you’re machining it. Having expert material knowledge is essential for this reason, which is why AIP has it as one of our core offerings.

 

One example of this would be knowing if you’re machining a thermoset or a thermoplastic.

 

Here are a few polymer machining guides that discuss the specifics of plastic machining various materials:

 

Want to learn more about AIP Precision Machining’s capabilities?

Explore our extensive plastic machining capabilities here, or if you like, you can contact us to get a quote here.

Follow AIP Precision Machining on Linkedin

linkedin logo

To a certain degree, 3D printing, injection molding, and plastic machining technology overlap in their capabilities and offerings. But which fabrication process is most appropriate for your project? What are their key differentiators? The following article assesses the utility of each technology with regard to precision, efficiency, materials and more.

 

Capabilities

 

An example of 3d printing example of Yoda

3D printing is an additive manufacturing process that prints layers of plastic substance in three dimensions onto a single point. The popularity of 3D has grown significantly over the past few years, and it can easily be used for rapid prototyping, DIY production and manufacturing by small-scale engineers or designers. Many of the advances in 3D printing have been focused on bringing down prices, rather than technological advancement so that it can be more accessible to “mom-and-pop” users who are otherwise not eligible for the more expensive and advanced manufacturing processes.

 

An example of injection molding

 

Another additive technology, injection molding is a manufacturing process in which parts are produced by injecting materials in liquid form into a mold. Commonly performed with thermoplastic polymers, it can be used with a variety of other metal and glass materials. Small pellets of material are heated into a molten liquid which is then injected into a mold at high pressures and rapidly cooled—causing it to harden—and then ejected from the mold, exposing the part to air. Two of its key benefits include a fully automated process—permitting very high rates of production—and also that its molds allow for highly detailed and intricate parts.

 

An example of plastic molding

 

Finally, plastic machining, or CNC (Computer Numerical Control) plastic machining or CNC milling, involves the precise removal of layers from a material. Typically beginning with a block of the desired plastic material, plastic machining involves removing material layers at a time and allows for many different materials to be used. Introduced by MIT during the 1950s, this technique utilizing drilling tools to carve plastics—and because it’s computer-controlled, extremely precise and tolerant products are achieved.

 

 

 

Comparing the Options

 

 

3D PrintingInjection MoldingPlastic Machining
CostVery low cost when you need 1-10 rapid design iterations on a prototype part.Because creating (or updating) a mold can end up being much more expensive than the actual order itself, this is only cost-effective with very large-scale projects.Significantly cost-effective when you need a few parts up to a few thousand.
DesignDesigns can be highly personalized and unique—this technology is often used by artists and creative professionals.Allows for deep features, square holes and living hinges to be produced easily.High design flexibility at lower costs are allowed.
MaterialVery limited in comparison to other plastic fabrication and unable to achieve the same smooth surfaces as the other technologies.Injection molding has a much wider range of materials available for use compared to 3D printing but is more limited than CNC machining.Broadest range of materials are allowed—CNC plastic machining also achieves the smoothest finish with the fewest imperfections.
ProductionFast and extremely convenient—small products can be machined in seconds.Requires time to make the mold but once the mold is finalized, production moves quickly.One of the fastest forms of fabrication and can easily scale between small and large outputs.
Tolerance3D printed prototypes are not typically finished parts and are much more likely to delaminate. Best for home and personal consumer-grade products.Parts are molded at tighter tolerances than 3D printed parts but are not as tolerant as plastic machined parts.Highest tolerances available—parts are able to reach +/- 0.002 mm and are best for demanding industries like aerospace and defense, medical and life sciences and power generation.

 

Why Plastics Machining Ranks Best

 

From the above chart, you can see the differentiators of each fabrication process. However, we’ve found that CNC plastic machining is by far the most precise and beneficial process for custom applications.

 

Cost-wise, plastics machining is the most effective for any project that requires unique, strong designs. 3D printing is the cheapest form of fabrication but you get what you pay for with that medium… and the quality typically just isn’t there. Injection molding, meanwhile, offers much stronger products than those that are 3D printed, but modifications to a mold are extremely expensive and injection molded products are not as tolerant as plastic machined parts.

 

Looking at design abilities, each medium offers a wide range of capabilities but again, if it’s quality that your project needs, CNC machining is the way to go—3D printed materials are really only suited to personal or home use and injection molded products cannot hold up to the rigors of the aerospace and defense, medical or power and energy industries (among others). Further, machining designs are crafted on the same computer applications that 3D printing uses so there’s no cost associated with changing the design of the product (unlike injection molding, where a new mold would then need to be created).

 

It is important to note that CNC plastic machining is a specialized craft… not just anyone interested in 3D modeling can create the design for a plastic machined product. Here at AIP Precision Machining, we have over 35 years of technical design expertise and we work diligently with our clients to craft products that exactly meet their project requirements.

 

If you’re looking to decide on a fabrication process via the material selection available to you, plastics machining offers the widest range of diverse thermoplastics for your project. 3D printing has not advanced its material range in many years and because injection molding requires liquidating its materials, you won’t be able to use the stronger, heat-resistant plastics that might be best for your needs. CNC machining is the only process that allows you to choose from the full assortment of material selections.

 

3D printing and CNC machining tie for the fastest production times, as both take minutes to complete. Injection molding, however, requires more time to make the mold (which can take weeks to finalize).

 

Finally, if your project requires the highest levels of tolerance, precision machining produces the most precise and extremely tolerant products. It’s the only fabrication process suited for critical pieces.

 

Want More Information?

 

Of 3D printing, injection molding and CNC plastic machining, one process is not necessarily better than the other—it’s dependent on your project requirements. However, plastics machining is by far the most specialized and precise option for high-quality, critical parts needed in industries like aerospace and defense, medical and life sciences and power and energy.

 

Here at AIP Precision Machining, we commonly craft pieces that are able to survive the rigors of space, the inside of a human body or the corrosive chemicals used on an oil rig. We offer state-of-the-art technology and extensive expertise to provide you with the highest quality products. Contact us to learn more about our process and what CNC plastics machining could do for you.

Follow AIP Precision Machining on Linkedin

linkedin logo