Most polymers have a natural tendency to absorb water. In fact, some superabsorbent polymers are highly sought after in advanced applications for medical, construction and more. Yet, moisture absorption of thermoplastics leads to changes with regard to processing and properties.


It is crucial for machinists and designers to understand the moisture absorption of thermoplastics for CNC machining. During the design phase, this not only helps with initial material selection, but plays a role in predicting the life span of a part. At AIP, we take great care in providing unrivaled results to ensure the optimal dimensions and properties for machined polymers and composites. Join us in this technical brief as we give an in-depth explanation of the effects of moisture absorption for machined polymers.


Plastics Machining and the Importance of Water Absorption


Moisture / water absorption is the capacity of a plastic or a polymer to absorb moisture from its environment. Absorbed moisture sometimes acts as a plasticizer, reducing the glass transition temperature and strength of plastic (this is a reversible side effect). However, absorbed water also can lead to irreversible degradation of the polymer structure.


Some effects include:

  • Dimensional and mass changes (swelling) caused by water absorption
  • Extraction of water-soluble components
  • Changes in mechanical (elasticity, tensile strength, impact strength) and electrical performance


Water absorption is expressed as increase in weight percent or % weight gain of a plastic specimen under the following testing procedures:

  • Water Absorption 24 hrs at 23°C – Immersion of a plastic specimen in distilled water during 24 hours at 23°C
  • Water Absorption 24 hrs at 100°C– Immersion of a plastic specimen in distilled boiling water during 24 hours Water Absorption at saturation – Immersion of a plastic specimen in distilled water at 23°C.  Measurement occurs when the polymer does not absorb water anymore
  • Water Absorption at Equilibrium– Plastic specimen is exposed to a humid environment — generally at 50% relative humidity — at a specified temperature — 23°C or 73.4°F — for 24 hours


(Source: Omnexus)


Exposure to humidity, immersion and boiling water can result in different material responses. The equilibrium moisture content can be used to compare the amount of water absorbed by different types of plastics when they are exposed to moisture.


Plastics Processing and Properties


Polymers are affected by moisture from their environment or from simply sitting on a shelf waiting to be used.  This is not a huge concern, but when the moisture absorption reaches more than 1% or 2%+, this can result in enough dimensional movement to create concerns.


Moisture Absorption Affects:

  • Mechanical properties
  • Wear properties
  • Dimensions


For example, parts made from TORLON (PAI) require special attention due to a 1.7% moisture at saturation value.  While this number may not sound like much, it is enough to cause a precision machined TORLON part to exceed tolerance; in this scenario, the part cannot be used.


Therefore, it is important to properly package these mission critical polymers for lasting shelf-life and function.  This can be achieved in two ways:  1) Vacuum-sealing them in a moisture-impermeable layer or 2) packaging them with bags of desiccant.  This prevents moisture uptake in humid environments.


Tests to Measure Water Absorption of Plastics




ASTM D570 – Standard Test Method for Water Absorption of Plastics


This test method for rate of water absorption has two main functions:

  1. A guide to the proportion of water absorbed by a material and consequently, in those cases where the relationships between moisture and electrical or mechanical properties, dimensions, or appearance have been determined, as a guide to the effects of exposure to water or humid conditions on such properties.
  2. A control test on the uniformity of a product. It is particularly applicable to sheet, rod, and tube arms when the test is made on the finished product.


Procedure:  Parts are dried in an oven for a specified time and temperature and then placed in a desiccator to cool.  Upon cooling, the specimens are weighed to establish a point of reference.  The material is then submerged in water at standardized conditions (usually 23°C for 24 hours or until equilibrium).  Specimens are removed from the liquid, dried and weighed.


What affects water absorption?

  • Type of plastic
  • Morphology (crystalline, amorphous…)
  • Type and proportion of additives, fillers and reinforcements used
  • Fiber fraction and orientation (in composites)
  • Relative humidity and temperature
  • Length of exposure


Water Absorption Values for Common Polymers


Polymer NameMin Value (% weight)Max Value (% weight)
ABS – Acrylonitrile butadiene styrene0.051.80
PA – Nylon Polyamide, 66 30% Glass Fiber0.801.10
PAI – Polyamide-Imides (TORLON)0.100.30
PBI – Polybenzimidazole (CELAZOLE)0.45
PC – Polycarbonate, high heat0.100.20
PE – Polyethylene, 30% glass fiber0.020.06
PEEK – Polyetheretherketone0.100.50
PEI – Polyetherimide (ULTEM)0.200.30
PP – Polypropylene0.010.10
PS – Polystyrene, high heat0.010.07
PSU – Polysulfone0.200.80
PTFE – Polytetrafluorethylene0.0050.015
PVC – Polyvinyl chloride, rigid0.040.40
PVDF – Polyvinylidene fluoride (KYNAR)0.030.05


As the chart notes, some polymers such as Nylon (PA) have a higher rate of % gain from moisture absorption.  However, polymers like PVDF and PTFE have a very low % gain in weight after the ASTM D570 test – which makes them excellent candidates for applications where moisture is a factor.


Performance thermoplastics are often exposed to high temperature applications (aircraft engines) which also absorb high levels of moisture.  This is common in materials such as PBI (Celazole) and PAI (Torlon), since these polymers absorb moisture at high rates but are also specified in high temperature applications.


Basically, what can happen is that these materials absorb the moisture if not properly stored and packaged.  Then if subject to high levels of heat without time for the moisture to dissipate, the internal moisture boils and turns to steam causing the parts to crack and blister.


Managing Moisture Absorption

For predictable machined part fit and performance, stock shapes and finished parts should be stored in a dry environment.  Both finished parts and stock shapes should be packed in moisture barrier packaging.  Only open packaging just prior to use.  In the event that a part may have adsorbed so much moisture as to risk shocking it when placing it in high temperature or vacuum service, consider drying the material prior to use or re-use.


Your machining facility will have specifications on temperature and storage procedures for all polymers, stock shapes and components.  When it comes to critical applications, work with a machine shop that has high standards for storing products.  After all, machining a polymer is only part of the entire process; wasted machining, revenue and parts is not worth risking poor storage conditions.  The table below shows some common packaging for polymers to increase and preserve shelf-life.



Generally, you can find a polymer’s 24 Hour and Saturation Moisture Absorption Values on a data chart.  A chart can give a general idea of the moisture absorption, but an entire data set with the curve of a material is the best way to determine the right material for your project.  Be sure to work with a plastics machining company that can provide you a wide range of data on the moisture absorption of polymers and composites.  Your machinist will be able to identify how moisture and humidity will affect your project’s design and functionality.  Talk to one our engineers at AIP about your project design, and we will work with you to provide unrivaled expertise from your project’s initial concept to completion.


Supporting Materials

Certifications and Regulatory Resources


Want to learn more about factors that contribute to effective CNC machining?

Read Our Blog on CLTE

Follow AIP Precision Machining on Linkedin

linkedin logo

The last step in finishing a part is to apply an appropriate finish. Finishing a machined part can be as simple as smoothing off the burrs and other sharp edges or painting and coating the material to improve aesthetics and functionality. In the initial design phase of your project, talk to your machinist about the finishing processes to get a highly precise and extremely resilient piece.


AIP has over 37 years of experience machining complex components from thermoplastics. In this technical blog, we discuss putting the finishing touches on your CNC machined part, including: finishing, deburring, painting and polishing.


Common Finishing Techniques for CNC Machining


As Machined

The “as machined” part is the standard finish for the material. Many times, it has visible tools marks, but it has no additional cost to the machining process. Also, this finish has the tightest dimensional tolerances. Our standard AIP machined finish has almost no tool marks – we go the extra mile for our customers to produce unparalleled results. Taking pride in our craftsmanship and attention to detail is what makes us stand out from other CNC machine shops in the industry.



Deburring involves the removal of burrs and sharp edges. A variety of tools may be used including die grinders, deburring scrapers, files and various stones.



Painting a finished part fulfills two requirements: 1) improves appearance (aesthetics) and 2) enhances the function of the piece.


Various coatings and treatments provide protection and add color to the surface of machined parts:


  • Plating: Chrome plating, nickel plating and other kinds of metal can be applied via plating processes.
  • Painting: Resins generally come in many different colors and can be painted to fit the exact specifications of a project.
  • Powder Coating: Powder coating adds a wear and corrosion finish to the surface of a part. It has a higher impact resistance compared to anodizing and a large range of colors are available.
  • Silk Screening: This is an inexpensive way to print text or logos on the surface of a CNC machined part. The print can be applied only to external surfaces on a part.



There are several different types of polishing to finish off a machined plastic part. Here are a few of the most common methods:


  • Vibratory Polishing: This method uses rotating or vibrating tumblers along with a variety of media to deburr, remove tooling marks and polish parts. It is convenient for large bulk items that need polishing. Put them in a tumbler and go do something else.
  • Bead Blasting: This process uses compressed air to blast an abrasive media at the material. This method is done inside of a blast cabinet. It adds a uniform matte or satin surface finish on a machined part and removes all tool marks.
  • Filing: Filing down the edges or burrs on a small machined part is a craft, however, a good file offers efficiency. This technique is often taught to apprentice machinists.
  • Stoning: Machinists use stones and oil to deburr and knock off sharp edges that tear and snag.


Case Study: Making a Splash with Machined PPS


The finishing plays a major role in the quality, durability and utility of a machined plastic part. For our client in the theme park business, it meant reducing a water ride’s overhauls by 25 times.


When a popular ride experiences downtime, the negative impact on guest satisfaction is immediate. Lost interest and value in a park experience can mean loss of customers and in effect revenue. For our Florida theme park client, this was the case with their log flume coaster ride. While this ride was thrilling for its daily customers, the ride required nightly repair and part replacement. They specifically needed new wheel bushings from a more innovative material.


Since we had worked with this client previously, we were able to assess the project. The log flume’s passenger carts originally used bronze bushings due to their nice, soft wear, however, the speed and load of the carts generated a great deal of heat when the ride would plunge into its steep vertical drop. The moment each cart hit the cool water below, the wheel bushings would suddenly experience “shock cooling” damage.


Between this and the constant exposure to chemicals in the water (chlorine), the bronze bushings had a very short life cycle.


Our team selected Quadrant’s BG1326, a bearing-grade high-performance thermoplastic PPS.


PPS CNC Machining ExamplePPS has a low moisture absorption rate and can be machined to the exact tolerances necessary for clearing and shaft. With low-wear, high temperature stability and a low coefficient of friction, the chosen PPS grade proved to be an excellent fit for the log flume’s wheel bushings.


Our machinists at AIP worked diligently with the ride engineers to ensure the PPS bushings were built to exact specifications. The chosen method for machining the parts was precision machining. This way the components could meet the precise tolerances and finishes demanded by the speed and load of the log flume.


The Benefits


The main benefit of the machined PPS bushings was the reduction in ride downtime. The previous bronze bushings required around 25 times the overhauls of the new PPS bushings. The change in materials not only saved on maintenance and inventory costs, but improved guest satisfaction with the increase in uptime.


The PPS bushings also removed the potential for grease to affect seals or chemicals in the water. As a self-lubricating plastic, PPS removed the need for nightly greasing the wheel bushings. The lower energy cost of the PPS material also made for a more environmentally friendly and efficient design.


Preventing Contamination


Some companies machine both metals and plastics, which can open the door to contamination of a product. Although some sources state that most CNC machining tools can be used for both metal machining and plastic machining, this is not recommended. Past experiences have shown parts going to customer without cracks, only to develop surface warpage and cracks over time due to exposure to metal machine shop fluids.


Mitigate contamination by working with a facility like AIP that works solely with polymers. We ensure the highest level of sanitation down to the sub-molecular level by designing, heat-treating and machining only plastics. This allows us to eliminate the risk of metallic cross contamination.


Supporting Materials


Certifications and Regulatory Resources


We promise unmatched precision and unrivaled expertise at AIP.


Learn more about our capabilities and reach out to our machinists for a consultation on your precision machined project.


Discover Our Capabilities


Follow AIP Precision Machining on Linkedin

linkedin logo

3 Tips from the Plastics Machining Pros on choosing the most suitable material for your machined polymer components


CNC machining produces high-end, mission critical products for many markets and industries. It allows for tight tolerances on part dimensions and complex designs. However, before the machining can happen, the design must be completely planned out with your manufacturer. In order to get the best outcome for the design, you must choose the right polymer for your precision machined project.


As a precision plastics machining company, we work closely with our clients on the initial design conception for their project. Specialized in understanding and envisioning how to manufacture extremely complex designs, our team can see beyond the concept through to the exact specifications and output of the finished product. We prioritize all aspects of the material selection in order to deliver the optimal machined product to fulfill your design.


In our latest blog series on Design for Manufacture (DFM), we discuss 3 tips for material selection to discuss with your machinist and precision polymer manufacturer.


Finding the Right Material


Material selection for your design is a critical step in the design process. Not only do you need to select a material that is suitable for your product, but also discuss with your manufacturer cost effective options. Here are some basic details to cover with your manufacturer to get the optimal material for your project:


#1 Define material requirements:

What is the purpose or end use of the component? This includes environment considerations – such as whether or not the material will undergo extreme temperature, pressure, chemicals or wear.


Some material properties to consider include the following:


  • Electrical properties – Does the material need to act as a dielectric (act as an insulator rather than a conductor)?
  • Mechanical properties – How strong does the material need to be?
  • Chemical Resistant – Will the material be exposed to chemicals often?
  • Wear / Friction – How durable should the material be?
  • Color – What color does the part need to be?
  • Optical properties – Does the material need to be reflective or transparent?
  • Thermal properties – How heat resistant does it need to be?
  • Flammability – How flame/burn resistant does the material need to be?
  • Standards – Does the part need to follow industry standards and regulations? Check that your machining facility has all of the proper registrations.


#2 Identify candidate materials:

Consider all of your options for machined polymers. Some are more suitable for the medical environment versus those that would be chosen for aviation and defense applications.


Speak to your machinist and manufacturer about the material options available for your project. They will have a portfolio of materials that they can assess to find the optimal and cost-effective solution for you. Additionally, be sure your manufacturer has vast experience machining the materials you are considering.


#3 Select the most suitable material:

You will most likely need to pinpoint the most important features of your design that you cannot compromise on (for example, mechanical performance and cost). The manufacturability and overall cost of your project will influence your material choice. For instance, the more material your part uses, the more expensive it will be. Also, specialty materials such as PEEK and VESPEL will cost more.


Case Study: Choosing a Life-Saving Material To Reduce Brain Surgeries


Choosing the right material is not only essential in the design phase, but it can be life-saving. In our experience working with the medical industry, we know our clients prioritize biocompatibility, durability and mechanical stability in machined parts for medical devices.


In our recent case study, we worked with Neurosurgeon Rohit Khanna to develop a device to help lower the need for additional surgeries in patients of traumatic brain injuries or strokes. The device, known as a dynamic telescopic craniotomy, holds a portion of the skull (or bone flap) and the rest of the skull together, while enabling the brain to swell and expand. The device would significantly lower the need for repeat surgeries in patients, thus lowering the chances of morbidity.


PEEK Product for brain surgeriesOur team of designers, engineers and machinists worked closely with Dr. Khanna to develop a prototype for the project. The parameters for the material were steep: implantable, moisture resistance, biocompatibility, sterilizable and mechanical stability under pressure. We determined that medical grade PEEK was the ideal candidate to build the prototype, since it was renowned for its ductility, long-term implantation and biocompatibility. In collaboration with Dr. Khanna, we designed a plate-like thermoplastic PEEK device that holds the bone flap together and flexes in different directions if and when the brain swells.


Learn more about our work with Dr. Khanna and medical grade PEEK here.


AIP Precision: Polymer and Composite Material Expertise


Man Quality Assurance testing Peek Product


We are proud to offer a quality assurance process that focuses on actual product quality, fast delivery and cost-effective options. Our team of machinists provide the highest level of engineering expertise from initial design conception to a finished machined component. Our facility strictly machines polymers and composites, so you know that your product will be free of contamination and impurities. Additionally, we are not bound to any one source of raw materials which provides our customers an unbiased material selection process.


Our skilled team has over 37 years of working with professionals and OEMs in the following industries: medical sciences, aerospace and defense, energy and specialized industrial sector. From sensitive environments to complex shapes, we precision machine parts for a wide range of applications. We assess quality at every step of the machining process, and hold ourselves to high standards. Our facility is FDA Registered, ITAR Certified, ISO 13485:2016, ISO 9001:2015 and AS9100D Certified. For this reason, we have the capabilities to take on diverse and varied projects. If you have an initial design conception for a machined plastic part, contact our team and we will be happy to offer a consultation on material selection and machining services.


Supporting Materials


Certifications and Regulatory Resources



As a precision plastics machining company for medical devices, we are FDA registered to ensure the highest quality assurance for your medical machining project.


Learn more about what it means to be FDA registered.


Read Our Blog

Follow AIP Precision Machining on Linkedin

linkedin logo

A discussion with the plastics pros at AIP on how the ISO 13485:2016 standard improves quality assurance for medical machined plastics.


What sets a quality management system (QMS) above the rest for medical device manufacturing and machining? Safety, sanitation and product integrity are, without a doubt, crucial for any plastics machining company working with materials for medical use.


How can you ascertain the validity of a company’s QMS?


One way to do this is to look for whether the machining shop is ISO 13485:2016 certified. This regulation requires that a certified organization demonstrate that their QMS is effectively implemented and maintained.


At AIP, we not only promise a quality assurance program, we are ISO 13485:2016 certified. As a precision plastics machining company, we have worked with medical OEMs to develop parts for critical medical devices for more than 35 years. We understand the value of a transparent QMS program through the ISO 13485:2016 certification.


If you are curious to know more about this certification, read on as we discuss more on the benefits of the ISO 13485:2016 certification.


What is the ISO 13485:2016 Standard?


ISO certification logoThe ISO 13485:2016 standard specifies requirements for a quality management system where an organization or company must demonstrate its ability to provide medical devices and related services that consistently meet customer and applicable regulatory requirements, such as sanitation in the work environment to ensure product safety.

It encompasses a broad range of organizations involved in the medical device industry. These include: design and development, production, storage and distribution, installation, or servicing of a medical device and associated activities.


How does this certification help AIP serve the medical market?

ISO 13485:2016 reflects our strong commitment to continual improvement and gives customers confidence in our ability to bring safe and effective products to the medical market.


We know that product durability and cleanliness are not just desirable within the medical industry, they’re essential. The ISO 13485:2016 compliance highlights our commitment to machining medical devices with quality custom plastic components.


We have been successfully audited by some of the most stringent OEMs in the orthopaedic and medical device industries. Our plastics are processed with strict hygienic procedures to ensure the highest level of sanitation down to the sub-molecular level.


At AIP, quality assurance is a norm not only for our customers but for ourselves. The ISO 13485:2016 certification is designed to integrate with our existing quality management system. With it, we can ensure our customers the highest-level of safety and performance for their medical machined parts.


What about AIP Precision Machining allows us to achieve ISO 13485:2016 certification?

“Anyone who tells you that it is not about the people is wrong,” said MacDonald. “While leadership provided the vision and desire to seek out ISO 13485:2016 certification, our dedicated team at AIP went the distance and got us over the finish line. It is our team who will maintain and continually enhance those key processes to make us better every day at meeting the needs of our valued customers.


Want to learn more about machining plastics for medical devices?

Read our blog on ways to ensure sterilization in plastic machined medical applications:


Read More


Follow AIP Precision Machining on Linkedin

linkedin logo

An Informational Brief on Polymer Machining


Since it was first polymerized in 1954 by Karl Rehn and Giulio Natta, polypropylene (PP) has become one of the leading polymer choices for a wide array of applications from automotive to commercial to medical.


Polypropylene plays a significant role in medical applications due to its high chemical resistance, lightweight, radiolucency and repeated autoclavability. Furthermore, medical grade PP exhibits good resistance to steam sterilization and moisture resistance. Disposable syringes, instrument or implant caddies and fluid delivery systems are the most common medical application of polypropylene. Other applications include medical vials, diagnostic devices, petri dishes, intravenous bottles, specimen bottles and surgical trays.


Want to learn more about the polymers we precision machine for medical applications?


Read Our blog


AIP has over 35 years of experience machining complex components from thermoplastics like polypropylene. In this insightful technical brief, we will discuss what goes into machining polypropylene and how it differs from other manufacturing options such as metal machining, injection molding, and 3D printing.


Homopolymer vs Copolymer – What’s the Difference?


The two main types of polypropylene available on the market are homopolymers and copolymers. Although they share many properties, there are some differences that help guide machinists and engineers in choosing the right material for their PP application. For the purposes of this blog, we will briefly review the differences between PP homopolymer and PP copolymer.


PP HomopolymerPP Copolymer
  • High strength to weight ratio and stiffer & stronger than copolymer
  • Good chemical resistance and weldability
  • Good processability
  • Good impact resistance
  • Good stiffness
  • Food contact acceptable
  • Suitable for corrosion resistant structures
  • Bit softer but has better impact strength; tougher and more durable than homopolymer
  • Better stress crack resistance and low temperature toughness
  • High processability
  • High impact resistance
  • High toughness
  • Not preferable for food contact applications


Properties of Polypropylene


Keeping information about the properties of a thermoplastic beforehand is always beneficial. This helps in selecting the right thermoplastic for an application. It also assists in evaluating if the end use requirement would be fulfilled or not. Here are some of the key properties of polypropylene:


Polypropylene is characterized by excellent chemical resistance in corrosive environments, resistance to cleaning agents and solvents and by a high heat deflection temperature.


It also has great dimensional stability and is fairly easy to machine. As noted above, it is available in heat-stabilized homopolymer and copolymer grades. At AIP, we machine POLYSTONE P, PROPYLUX HS and HS2, PROTEUS LSG HS PP from MCAM, TECAPRO MT and TECAFINE PP from Ensinger. Interesting to note is that both the PROPYLUX and TECAPRO heat stabilized PP grades are available in both standard and custom colors for medical sorting and sizing organization. Whatever your application, our machinists can help you in material selection, sizing and manufacturing techniques from concept to completion.


Melting Point of Polypropylene – The melting point of polypropylene occurs at a range.


Homopolymer: 160 – 165°C
Copolymer: 135 – 159°C


Density of Polypropylene – PP is one of the lightest polymers among all commodity plastics. This feature makes it a suitable option for lightweight\weight saving applications.


Homopolymer: 0.904 – 0.908 g/cm3
Random Copolymer: 0.904 – 0.908 g/cm3
Impact Copolymer: 0.898 – 0.900 g/cm3


Machining Polyproylene


Annealing Polypropylene

Due to its low annealing temperature, PP, like any polymer under heat and pressure, has a tendency to deform during machining. The annealing process at AIP greatly reduces the chances of these stresses occurring from the heat generated during machining PP and other polymers. Our machinists use computer controlled annealing ovens for the highest quality precision machining.


Machining Polypropylene

As a part of the polyolefin family, PP is semi-crystalline, which means that it can be machined at tight tolerances. We recommend non-aromatic, water-soluble coolants because they are most suitable for ideal surface finishes and close tolerances.


Bear in mind that polypropylene has variable levels of thermal expansion and will move a great deal with slight temperature changes. Some examples are pressurized air and spray mists. Coolants have the additional benefit of extending tool life as well.


Some companies machine both metals and plastics, which has detrimental outcomes for clients. Many past experiences have shown parts going to customer without cracks, only to develop cracks over time due to exposure to metal machine shop fluids. Be sure to use a facility like AIP that only machines polymers.


Preventing Contamination

Contamination is a serious concern when machining polymer components for technically demanding industries such as aerospace and medical sciences. To ensure the highest level of sanitation down to the sub-molecular level, AIP Precision Machining designs, heat-treats, and machines only plastics with any sub-manufactured metalwork processed outside our facility. This allows us to de-risk the process from metallic cross contamination.


Polypropylene Machining Guide: Supportive Information


ISO 13485:2016 Certification
ISO 9001:2015 Certification


Need a machined part from medical grade polypropylene?

Talk to our team of expert engineers and machinists about your project needs and specifications.


Get a Consultation

Follow AIP Precision Machining on Linkedin

linkedin logo

A discussion with the plastics pros at AIP on how to choose the right plastic for your medical application


When it comes to selecting a polymer for a medical application, there are a myriad of factors that play into deciding which grade of polymer is the best candidate. Of course, the number one concern in medical device design is safety of human life.


For this reason, trends in medical device design are moving toward miniaturization and portability. Additionally, sterilization and cleanliness continue to lead design considerations globally, requiring devices to withstand a range of chemicals and sterilization techniques.


As a precision plastics machining company, AIP has over 35+ years of experience working with medical OEMs to develop parts for critical medical devices. In this issue of our monthly blog, we will discuss what makes a polymer medical grade and how to choose the right polymer for a medical device application.


What are medical grade plastics?


Let’s begin with what a medical grade plastic is. Medical-grade plastics refer to plastics used to make medical products, products for in vitro diagnostics and primary packaging for pharmaceuticals.


Most importantly, plastics used in the medical field are coming in contact with human tissue, fluids, chemicals, drugs and many more substances. There are literally thousands of medical applications from packaging to spinal implants. Based on this information, your supplier should be familiar with the types of polymers and composites you need machined. They should additionally know the best machining process for your application. That’s why design conception is crucial as the first step.


1. Design requirements and constraints


First and foremost, what is the function of the polymer for the device?


Your machine shop should be asking you in depth questions about your medical application. Questions to consider include:


  • Should the material be biocompatible?
  • Is the product for single use?
  • Will the component undergo sterilization? If so, which method?
  • Does color and aesthetics matter in the machining process?
  • Is UV resistance needed?
  • What tolerances must be met for temperature, wear, impact, etc?


The following material selection flow-chart displays the overall process of developing a medical grade plastic part or device:


Market Needs Infographic


2. Industry Standards


What industry standards and regulations control the production of the material?


At AIP, our plastics are processed with strict hygienic procedures to ensure the highest level of sanitation. Make sure that your machining company is compliant and/or registered with the appropriate regulatory organizations. Some common medical certifications include the following:


  • ISO 10993
  • ISO 13485:2016
  • FDA Registered


3. Biocompatibility


How long does the component need to be in contact with the human body or tissue?


There are three categories of contact duration if a component is subject to body tissue or fluid:


  • Short-term contact (Less than 24 hours)
  • Medium term contact (Between 1-30 days)
  • Long-term or Permanent contact (Greater than 30 days)


4. Sterilization/Cleanliness


Will the device need to be resistant to chemicals or undergo multiple sterilizations?


Whether it’s a feeding tube, a drug delivery device or a surgical implant, the polymer material must be able to withstand chemical degradation and multiple sterilizations.


The most common sterilization methods include:


  • Radiation (gamma/e-beam)
  • Chemical (ETO)
  • Autoclave (steam)


Chemicals to consider for contact with the device could be:

  • Intravenous medications
  • Blood/Fluids/human tissue
  • Hospital cleaners – bleach, isopropyl alcohol, peroxides


5. Polymer Characteristics


What mechanical properties does the polymer need to fulfill?


Selecting a plastic material is based on a number of traditional material requirements such as strength, stiffness or impact resistance. Engineered thermoplastics like PC, PEEK, PPSU, POM, show excellent mechanical properties at low and high temperatures. These properties are required for a variety of climate conditions, including during transportation, where the influence of temperature on drop impact may result in different outcomes for device integrity.


Your machinist should be able to give you details about all the plastics in their portfolio such as:


  • High wear resistance
  • Tensile strength
  • Temperature resistance
  • Corrosion resistance
  • Durability
  • Dimensional stability


6. Aesthetics


Does the end product need to be a certain color or have certain qualities?


For instance, if it is a prosthetic for a foot, the polymer needs to be machined a certain shade to match skin tone.


7. Other Material Selection Factors


Anything else?


Other factors to consider and discuss with your machinist include additives for increasing the performance of the polymer, manufacturing process as well as the cost. Take into account the following:


  • Radiopacity
  • Conductive
  • Lubrication
  • Manufacturing feasibility
  • What manufacturing processes are you using and why?
  • Technical performance
  • Can we make this product with the material, and can we make it well?
  • Economics
  • If we can make it, can we make it for a reasonable cost?


At AIP, we are unrivaled experts in medical grade plastic machining.
Talk to our team about how to bring your project from concept to completion.


Contact Us


Follow AIP Precision Machining on Linkedin

linkedin logo

With over three decades of experience machining precision plastic and composite parts for the Aerospace & Defense industry, AIP Precision Machining knows that weight and strength are critical for your flight-ready hardware. That’s why we’ve carefully selected, machined, and tested all our thermoplastic materials to various aerospace industry standards. Our lightweight polymers and composites have stable chemical and corrosion resistance, as well as improved strength to weight ratios when compared to exotic alloys and non-ferrous metals. AIP’s polymer and composite materials maintain their properties even at high temperatures.


Read more on thermoplastic materials commonly used in the Aerospace & Defense industry for every day to mission-critical applications.





ULTEM-PEIULTEM has one of the highest dielectric strengths of any thermoplastic material, meaning it works very efficiently as an electrical insulator. Being resistant to both hot water and steam, ULTEM can withstand repeated cycles in a steam autoclave and can operate in high service temperature environments (340F or 170C).  ULTEM also has one of the lowest rates of thermal conductivity, allowing parts machined from ULTEM to act as thermal insulators.  ULTEM is FDA and NSF approved for both food and medical contact and therefore is an excellent choice for aircraft galley equipment such as ovens, microwaves and hot or cold beverage dispensing systems.  UL94 V-O flame rating with very low smoke output makes this material ideal for aircraft interior components.





CELAZOLE - PBICELAZOLE provides the highest mechanical properties of any thermoplastic above 400F (204C) and offers a continuous use operating temperature of 750F (399C). CELAZOLE has outstanding high-temperature mechanical properties for use in aircraft engines and other HOT section areas. This impressive lightweight material retains 100% tensile strength after being submerged in hydraulic fluid at 200°F for thirty days.







RYTON’s inherent fire retardancy, thermal stability and corrosion resistance makes it perfectly suited for aerospace applications, while its dimensional stability means even the most intricate parts can be molded from RYTON with very tight tolerances.  RYTON is typically used for injection molded parts, however, there is limited availability of extruded rod and plate for machining.







DURATRON PILike RYTON, VESPEL is dimensionally stable and has fantastic temperature resistance. It can operate uninterrupted from cryogenic temperatures to 550°F, with intermittent to 900°F. Thanks to its resistance to high wear and friction, VESPEL performs with excellence and longevity in severe environments—like those used in aerospace applications. VESPEL is a trademarked material of DuPont and can be provided in direct formed blanks or finished parts directly from DuPont.  AIP provides precision machined components from DuPont manufactured rod and plate stock.  VESPEL is typically used in high temperature and high-speed bearing and wear applications such as stator bushings.






TORLONDURATRON PAI’s extremely low coefficient of linear thermal expansion and high creep resistance deliver excellent dimensional stability over its entire service range. DURATRON PAI is an amorphous material with a Tg (glass transition temperature) of 537°F (280°C). DURATRON PAI stock shapes are post-cured using procedures developed jointly by BP Amoco under the TORLON trade name and Quadrant under the DURATRON trade name. A post-curing cycle is sometimes recommended for components fabricated from extruded shapes where optimization of chemical resistance and/or wear performance is required.  TOLRON parts are used in structural, wear and electrical aerospace applications.






TECHTRONTECHTRON has essentially zero moisture absorption which allows products manufactured from this material to maintain extreme dimensional and density stability. TECHTRON is highly chemical resistant allowing it to operate while submerged in harsh chemicals. It is inherently flame retardant and can be easily machined to close tolerances. It has a broader resistance to chemicals than most high-performing plastics and can work well as an alternative to PEEK at lower temperatures.





RADELWith high heat and high impact performance, RADEL delivers better impact resistance and chemical resistance than other sulfone based polymers, such as PSU and PEI. Its toughness and long-term hydrolytic stability means it performs well even under autoclave pressure.  RADEL R5500 meets the stringent aircraft flammability requirements of 14CFR Part 25, allowing the aircraft design engineer to provide lightweight, safe and aesthetically pleasing precision components for various aircraft interior layouts.  RADEL can be polished to a mirror finish and is FDA and NSF approved for food and beverage contact.






KEL-FKel-F is a winning combination of physical and mechanical properties, non-flammability, chemical resistance, near-zero moisture absorption and of course outstanding electrical properties. This stands out from other thermoplastic fluoropolymers, as only Kel-F has these characteristics in a useful temperature range of -400°F to +400°F. In addition, it has very low outgassing and offers extreme transmissivity for radar and microwave applications. Many aircraft and ground-based random applications use Kel-F.





PEEKPEEK can be used continuously to 480°F (250°C) and in hot water or steam without permanent loss in physical properties. For hostile environments, PEEK is a high strength alternative to fluoropolymers. PEEK carries a V-O flammability rating and exhibits very low smoke and toxic gas emission when exposed to flame. PEEK is an increasingly popular replacement for metal in the aerospace industry due to its lightweight nature, mechanical strength, creep and fatigue resistance, as well as its ease in processing. Its exceptional physical and thermal characteristics make it a versatile thermoplastic polymer in many aerospace applications.  AIP has provided flight control, fuel system, interior, engine and aerodynamic related PEEK components for various aircraft OEM and MRO providers worldwide.





KYNAR - PVDFAnother example of thermoplastic materials used in aerospace and defense is KYNAR, or PVDF. This polymer has impressive chemical resistance at ambient and elevated temperatures, as well as good thermomechanical and tensile strength. KYNAR is extremely durable due to its weather-ability and toughness even in the most severe environments. In addition to being flame-resistant, KYNAR is easy to machine, too. You can typically find KYNAR components in pipe fitting and various fuel or other fluid-related precision manifolds or connectors.






Click here to search our material data for more information or request a quote here.



Follow AIP Precision Machining on Linkedin

linkedin logo

Learn about AIP’s precision machining capabilities for mission-critical components.


High-performance precision plastics require high-performance precision CNC machining.  CNC machines, or computer numerically controlled machines, are electro-mechanical devices that use tools at varying axes (usually 3-5) to produce a physical part from a computer design file.


Our modern society runs on CNC machined plastic components – from everyday household piping to critical spinal implants.  The breadth of materials, shapes and industries served is endless.

At AIP, we precision machine parts for industries such as the aerospace & defense, medical & life sciences and power & energy.  Each part that is CNC machined comes with design specifications and dimensional tolerances.  Our machinists are capable of crafting parts at .002 mm tolerance, which can make a whole lot of a difference in the performance of a mission-critical part.


Let’s back up a moment though.  What are dimensional tolerances? And how do you know if your project should demand a tighter tolerance?  Read on in this month’s blog to find out.


Let’s Talk About Tolerance


What are machining tolerances?

In CNC machining terms, tolerance, or dimensional accuracy, is the amount of deviation in a specific dimension of a part caused by the manufacturing process.  No machine can perfectly match specified dimensions.  The designer provides these specifications to the machinists based on the form, fit and function of a part.


How are tolerances measured?   

CNC machines are precise and measured in thousandths of an inch, referred to as “thou” among machinists.  Any system is usually expressed as “+/-”; this means that a CNC machine with a tolerance of +/- .02 mm can either deviate an extra .02 mm from the standard value or less .02 mm by the standard value.


A precision machining tolerance scale

Why are tolerances critical?

Tolerances keep the integrity and functionality of the machined part.  If the component is manufactured outside of the defined dimensions, it is unusable, since the crucial features are not fulfilling the intent of the design.


How close can a tolerance get?

Tolerance depends on the material that you use and the desired purpose of the design.  In plastics machining, the tolerances can be from +/- 0.10 mm to +/- 0.002 mm.  Tighter tolerances should only be used when it is necessary to meet the design criteria for the part.


When .002 mm Matters


What is the .002 mm difference?  In many industries, such as the medical industry, it is crucial to machine parts with extreme precision so that they can interact with human tissue or other medical devices.  In fact, when it comes to manufacturing medical applications, subtractive manufacturing (CNC machining) provides tighter tolerances than additive manufacturing (3-D printing).



Color Pencil compared to precision machining
(AIP PEEK Eye Implant)

Tight tolerances like the .002 mm are important because plastics are machined to interact with other parts.  In particular, CNC milled or turned plastics are unique designs for limited quantities, such as custom-made brackets and fasteners, or components for prototyping purposes.


One of the most critical considerations when applying tolerances is to take into account fits. This refers to how shafts will fit into bushings or bearings, motors into pilot holes, and so on. Depending on the application, the part may require a clearance fit to allow for thermal expansion, a sliding fit for better positioning, or an interference fit for holding capability.


As with anything that is precision machined, tighter tolerances demand time and skill.  Make sure to work with a certified company like AIP that has the infrastructure and expertise to complete your project with unmatched precision and unrivaled experience.


Let our team go to work for you


With 36+ years of experience in the industry, our dedicated craftsmen and ties to leading plastic manufacturers allow us to provide you with unrivaled knowledge and consulting in material selection, sizing, manufacturing techniques and beyond to best meet your project needs.


AIP offers a unique combination of CNC machining, raw material distribution, and consultancy as a reliable source for engineering information for materials such as PEEK, TORLON, ULTEM and more.


We are AS 9100D compliant; certified and registered with ISO 13485 and ISO 9001 and standards in our commitment to machining quality custom plastic components for specialized industrial sectors. Quality assurance is included as an integral part of our process and is addressed at every step of your project, from concept to completion.



Tell us about your power & energy needs and we’ll get the job done quickly and efficiently at a competitive price.

or request a quote here.

Follow AIP Precision Machining on Linkedin

linkedin logo

Learn about the re-useable capabilities of precision plastics


In the world of recycling, plastic tends to have a bad reputation or it gets whispered like a dirty word.  Indeed, according to the UN Environment Programm, one million plastic drinking bottles are purchased every minute.  This is certainly a disturbing statistic, and we are tasked with addressing the consequences of this waste.  However, it is important to distinguish the type of plastics causing severe pollution.  Plastic bottles and plastic bags are single-use, disposable plastics.  These are the ones that are clogging up the environment.


What people don’t discuss often is plastics that are re-usable and recyclable.  At AIP, the plastics that we precision machine are high grade, quality polymers made for durability and continuous use in the following industries: Aerospace and Defense; Medical and Life Sciences; Power and Energy; Specialized Industrial.  That means they are evergreen materials that will not only last, but could be repurposed for a different application altogether.  Read on to find out about some of the high-performance polymers we work with, what they are used for and how they can be recycled.


Everyday Sustainable Precision Plastics
PolymerPropertiesAIP’s Machined Applications
PPSBroadest chemical resistance; zero moisture absorption; dimensional stability; ultra-low wear factors and structural strength

*available in several grades

Case Study: High-quality PPS wheel bushings for a theme park water ride.

  • Reduced ride downtime
  • Saved on maintenance and inventory costs
  • Lower energy cost
  • Efficient design
  • Low-wear
TORLONHighest performing, melt-processible plastic; maintains strength and stiffness up to 500 F; chemical, thermal and stress resistance

*available in several grades

Ideal for critical mechanical and structural components for severe levels of temperature and stress

  • Jet Engine Components
  • High Temperature Electrical Connectors
  • Automotive Transmission components
  • Wear Rings in Oil Recovery
  • Valve Seats
PEEKBiocompatible; abrasion and chemical resistant; low moisture absorption; very low smoke and toxic gas emission

*available in several grades

Case Study: PEEK Dynamic Telescopic Craniotomy (skull plate for brain traumas

  • Reduced ride downtime
  • Saved on maintenance and inventory costs
  • Lower energy cost
  • Efficient design
  • Low-wear
RADELImpact resistance; hydrolytic stability; excellent toughness; chemical resistance; heat deflection temperature of 405 F (207 C)
ULTEMExcellent heat and flame resistance; high rigidity and strength; low thermal conductivity; highest dielectric strength

*available in several grades

Used as structural components in several industries

  • High-voltage circuit-breaker housings
  • High-temperature bobbins, coils, fuse blocks and wire coatings
  • Jet-engine components
  • Aircraft interior and electrical hardware parts
  • Microwave applications
  • Replaces glass in medical lamps


Thermoplastics – The Green Plastic


There are two types of polymers – thermoplastics and thermosets.  The plastics that we work with primarily at AIP are thermoplastics.  So, what’s a thermoplastic and how is it re-usable or recyclable?


It’s all about how the polymer reacts to chemicals and temperature.  Thermoplastics soften when heated and become more fluid, which makes them a very flexible polymer.  For this reason, these plastics can be remolded and recycled without losing their mechanical properties or dimensional stability.  Let’s go in depth on some of the common thermoplastics we use for evergreen applications.


The AIP case study focusing on the use of PPS for the log flume ride bushing component is an excellent example of a thermoplastic built and machined for continuous use.  The bushing made from PPS could be used over and over again without wear.  Furthermore, it could be immersed in water and other chemicals without losing dimensionality or durability.


PEEK and ULTEM are both common polymers we machine at AIP.  With PEEK’s high chemical resistance and biocompatibility, it is ideal for surgical applications such as the Dynamic Telescopic Craniotomy Case Study.  This polymer can withstand the internal temperatures and fluids of the body for extended use.


ULTEM is known for its strength and rigidity in extreme environments and temperatures.  This polymer is often used for re-useable medical instruments, since it reacts well to autoclave sterilizations.  Additionally, it’s flammability rating and dimensional stability make it ideal as a weight-saving aerospace component.


As the plastics industry continues to innovate, the next generation of research will turn towards more sustainable and environmentally conscious materials.  Thermoplastics are one of the pioneers of this industry – leading plastics into the future as a material that can be reused and recycled.


Unrivaled Expertise. Unparalleled Results


Helicopter landing on shipWith 36+ years of experience in the industry, our dedicated craftsmen and ties to leading plastic manufacturers allow us to provide you with unrivaled knowledge and consulting in material selection, sizing, manufacturing techniques and beyond to best meet your project needs.


AIP offers a unique combination of CNC machining, raw material distribution, and consultancy as a reliable source for engineering information for materials such as PEEK, TORLON, ULTEM and more.


We are AS 9100D compliant; certified and registered with ISO 13485 and ISO 9001 and standards in our commitment to machining quality custom plastic components for specialized industrial sectors. Quality assurance is included as an integral part of our process and is addressed at every step of your project, from concept to completion.  Unrivaled Expertise.  Unparalleled Results.




Tell us about your unique project’s specifications, and we’ll get the job done quickly and efficiently at a competitive price.

or request a quote here.

Follow AIP Precision Machining on Linkedin

linkedin logo

An Informational Brief on Polymer Machining


Among the many plastics AIP precision machines, PSU (Polysulfone) is a high-performance thermoplastic made from UDEL Resin.  This particular thermoplastic is able to retain its properties in temperatures ranging from -150°F (-100°C) to 300°F (150°C).  This precision machined plastic also has excellent radiation stability, chemical resistance as well as hydrolysis resistance for continuous use in hot water and steam.


In many applications, PSU is used over stainless steel parts or aluminum as the material is seven times lighter than stainless steel and can also be steam-cleaned in areas like chemical labs.  For this reason, it has a wide range of uses in the following industries:  aerospace and defense, medical and life sciences as well as specialized industrial applications.


Our latest machining guide discusses what goes into machining PSU and how its considerations differ from other manufacturing options such as metal machining, injection molding, and 3D printing.


How does AIP approach PSU and its machining process? To start, we’ll explain the difference between machining PSU, a thermoplastic, and machining thermosets.


Machining Thermoplastics vs Thermosets


We’ve already said that PSU is a thermoplastic, but what does that mean exactly?


All polymers can more or less be divided into two categories: thermoplastics and thermosets. The main difference between them is how they react to heat. Thermoplastics like PSU, for example, melt in heat, while thermosets remain “set” once they’re formed. Understanding the technical distinction between these types of materials is essential to CNC machining them properly.


The table below outlines the main properties of thermoplastics versus thermosets:




  • Good Resistance to Creep
  • Soluble in Certain Solvents
  • Swell in Presence of Certain Solvents
  • Allows for Plastic Deformation when Heated
  • High Resistance to Creep
  • Insoluble
  • Rarely Swell in Presence of Solvents
  • Cannot Melt


From there, thermoplastics are categorized into amorphous or crystalline polymers per the figure below:



Based off of the chart, PSU is an amorphous, high performance engineering thermoplastic, meaning its molecular structure is randomly formed.  The result is that amorphous materials soften gradually with temperature increase, making them easy to thermoform.


Properties of PSU (Polysulfone)


Amorphous thermoplastics are usually translucent in color, but the gradients vary.  PSU, for instance, is amber semi-transparent.


Since they are isotropic in flow, they have better dimensional stability than semi-crystalline plastics and are less likely to warp.  Thermoplastics like PSU offer superior impact strength and are best used for structural applications.


The materials bond well using adhesives. They also tend to offer excellent resistance to hot water and steam, good chemical resistance, stiffness and strength. PSU and PEI are especially good examples of amorphous thermoplastics offering these qualities.


Machining PSU (Polysulfone)


Annealing PSU


Like many amorphous thermoplastics, PSU is especially sensitive to stress-cracking, so stress-relieving through an annealing process is highly recommended before machining.  Annealing PSU greatly reduces the likelihood that surface cracks and internal stresses will occur from the heat generated. Post-machining annealing also helps to reduce stresses that could potentially contribute to premature failure.  AIP uses computer controlled annealing ovens for the highest quality precision machining of PSU and other thermoplastics.


Machining PSU


Non-aromatic, water-soluble coolants are most suitable for ideal surface finishes and close tolerances. These include pressurized air and spray mists. Coolants have the additional benefit of extending tool life as well.


Many metal shops use petroleum-based coolants, but these types of fluids attack amorphous thermoplastics like PSU. Many past experiences have shown parts going to customer without cracks, only to develop cracks over time due to exposure to metal machine shop fluids. Be sure to use a facility like AIP who only machines polymers.


Preventing Contamination


Contamination is a serious concern when machining polymer components for technically demanding industries such as aerospace sciences. To ensure the highest level of sanitation down to the sub-molecular level, AIP Precision Machining designs, heat-treats, and machines only plastics with any sub-manufactured metalwork processed outside our facility.  This allows us to de-risk the process from metallic cross contamination.


PSU (Polysulfone) Machining Guide Supportive Information

Amorphous Materials Guide


Explore Our Inventory

or request a quote here.

Follow AIP Precision Machining on Linkedin

linkedin logo