With over three decades of experience machining precision plastic and composite parts for the Aerospace & Defense industry, AIP Precision Machining knows that weight and strength are critical for your flight-ready hardware. That’s why we’ve carefully selected, machined, and tested all our thermoplastic materials to various aerospace industry standards. Our lightweight polymers and composites have stable chemical and corrosion resistance, as well as improved strength to weight ratios when compared to exotic alloys and non-ferrous metals. AIP’s polymer and composite materials maintain their properties even at high temperatures.

 

Read more on thermoplastic materials commonly used in the Aerospace & Defense industry for every day to mission-critical applications.

 

 

ULTEM – PEI

 

ULTEM-PEIULTEM has one of the highest dielectric strengths of any thermoplastic material, meaning it works very efficiently as an electrical insulator. Being resistant to both hot water and steam, ULTEM can withstand repeated cycles in a steam autoclave and can operate in high service temperature environments (340F or 170C).  ULTEM also has one of the lowest rates of thermal conductivity, allowing parts machined from ULTEM to act as thermal insulators.  ULTEM is FDA and NSF approved for both food and medical contact and therefore is an excellent choice for aircraft galley equipment such as ovens, microwaves and hot or cold beverage dispensing systems.  UL94 V-O flame rating with very low smoke output makes this material ideal for aircraft interior components.

 

 

CELAZOLE – PBI

 

CELAZOLE - PBICELAZOLE provides the highest mechanical properties of any thermoplastic above 400F (204C) and offers a continuous use operating temperature of 750F (399C). CELAZOLE has outstanding high-temperature mechanical properties for use in aircraft engines and other HOT section areas. This impressive lightweight material retains 100% tensile strength after being submerged in hydraulic fluid at 200°F for thirty days.

 

 

 

 

RYTON – PPS

 

RYTON’s inherent fire retardancy, thermal stability and corrosion resistance makes it perfectly suited for aerospace applications, while its dimensional stability means even the most intricate parts can be molded from RYTON with very tight tolerances.  RYTON is typically used for injection molded parts, however, there is limited availability of extruded rod and plate for machining.

 

 

 

 

VESPEL or DURATRON – PI

 

DURATRON PILike RYTON, VESPEL is dimensionally stable and has fantastic temperature resistance. It can operate uninterrupted from cryogenic temperatures to 550°F, with intermittent to 900°F. Thanks to its resistance to high wear and friction, VESPEL performs with excellence and longevity in severe environments—like those used in aerospace applications. VESPEL is a trademarked material of DuPont and can be provided in direct formed blanks or finished parts directly from DuPont.  AIP provides precision machined components from DuPont manufactured rod and plate stock.  VESPEL is typically used in high temperature and high-speed bearing and wear applications such as stator bushings.

 

 

 

TORLON or DURATRON – PAI

 

TORLONDURATRON PAI’s extremely low coefficient of linear thermal expansion and high creep resistance deliver excellent dimensional stability over its entire service range. DURATRON PAI is an amorphous material with a Tg (glass transition temperature) of 537°F (280°C). DURATRON PAI stock shapes are post-cured using procedures developed jointly by BP Amoco under the TORLON trade name and Quadrant under the DURATRON trade name. A post-curing cycle is sometimes recommended for components fabricated from extruded shapes where optimization of chemical resistance and/or wear performance is required.  TOLRON parts are used in structural, wear and electrical aerospace applications.

 

 

 

TECHTRON – PPS

 

TECHTRONTECHTRON has essentially zero moisture absorption which allows products manufactured from this material to maintain extreme dimensional and density stability. TECHTRON is highly chemical resistant allowing it to operate while submerged in harsh chemicals. It is inherently flame retardant and can be easily machined to close tolerances. It has a broader resistance to chemicals than most high-performing plastics and can work well as an alternative to PEEK at lower temperatures.

 

 

RADEL – PPSU

 

RADELWith high heat and high impact performance, RADEL delivers better impact resistance and chemical resistance than other sulfone based polymers, such as PSU and PEI. Its toughness and long-term hydrolytic stability means it performs well even under autoclave pressure.  RADEL R5500 meets the stringent aircraft flammability requirements of 14CFR Part 25, allowing the aircraft design engineer to provide lightweight, safe and aesthetically pleasing precision components for various aircraft interior layouts.  RADEL can be polished to a mirror finish and is FDA and NSF approved for food and beverage contact.

 

 

 

KEL – F

 

KEL-FKel-F is a winning combination of physical and mechanical properties, non-flammability, chemical resistance, near-zero moisture absorption and of course outstanding electrical properties. This stands out from other thermoplastic fluoropolymers, as only Kel-F has these characteristics in a useful temperature range of -400°F to +400°F. In addition, it has very low outgassing and offers extreme transmissivity for radar and microwave applications. Many aircraft and ground-based random applications use Kel-F.

 

 

PEEK

 

PEEKPEEK can be used continuously to 480°F (250°C) and in hot water or steam without permanent loss in physical properties. For hostile environments, PEEK is a high strength alternative to fluoropolymers. PEEK carries a V-O flammability rating and exhibits very low smoke and toxic gas emission when exposed to flame. PEEK is an increasingly popular replacement for metal in the aerospace industry due to its lightweight nature, mechanical strength, creep and fatigue resistance, as well as its ease in processing. Its exceptional physical and thermal characteristics make it a versatile thermoplastic polymer in many aerospace applications.  AIP has provided flight control, fuel system, interior, engine and aerodynamic related PEEK components for various aircraft OEM and MRO providers worldwide.

 

 

KYNAR – PVDF

 

KYNAR - PVDFAnother example of thermoplastic materials used in aerospace and defense is KYNAR, or PVDF. This polymer has impressive chemical resistance at ambient and elevated temperatures, as well as good thermomechanical and tensile strength. KYNAR is extremely durable due to its weather-ability and toughness even in the most severe environments. In addition to being flame-resistant, KYNAR is easy to machine, too. You can typically find KYNAR components in pipe fitting and various fuel or other fluid-related precision manifolds or connectors.

 

 

 

 

 

Click here to search our material data for more information or request a quote here.

 

 

Follow AIP Precision Machining on Linkedin

linkedin logo

PART SUMMARY:

 

One of the high-performance thermoplastics that AIP machines is Polyetherimide (PEI), known by its tradename ULTEM.  Due to its weight-saving properties, high chemical and hydrolysis resistance and tensile strength, ULTEM is popular across several industries: Automotive, aerospace and defense, electrical and electronic market, medical and life sciences and industrial applications and appliances.  Read on to learn about what this incredible polymer can do!

 

MATERIAL PROPERTIES:

 

Polyetherimide (PEI) is an amorphous thermoplastic.  Polyetherimide was developed to provide sufficient flexibility and good melt processability while maintaining excellent mechanical and thermal properties.

 

Key properties of ULTEM PEI include:

  • Handling at temperatures up to 340°F (171°C)
  • Heat Resistance
  • Flame Resistance
  • Chemical Resistance
  • High Rigidity
  • Highest Dielectric Strength
  • Hydrolysis Resistance
  • Low Thermal Conductivity

 

ULTEM Applications

As mentioned previously, ULTEM is a highly sought-after thermoplastic for weight-saving capabilities in aerospace components to reusable autoclave sterilizations in medical applications.  However, it’s most commonly used in high voltage electrical insulation applications.

 

Common uses include:

  • Analytical Instrumentation
  • Dielectric Properties Required
  • Electrical Insulators
  • High Strength Situations
  • Reusable Medical Devices
  • Semiconductor Process Components
  • Structural Components
  • Underwater Connector Bodies

 

So, what can this polymer do?  Let’s take a closer look at how ULTEM (PEI) is applied in the Aerospace & Defense, Medical & Life Sciences and Specialized Industrial markets:

 

WHAT CAN ULTEM DO FOR AEROSPACE & DEFENSE?

 

In the Aerospace & Defense Industry, ULTEM is often applied to aircraft components for weight reduction in place of metal parts.  Additionally, since it has a high thermal resistance rating, polymer components have the benefit of evading radar detection in military aircraft.

 

AIP machines ULTEM 1000 & ULTEM 2300

 

ULTEM 2300 is a 30 percent glass filled version of virgin ULTEM 1000.  The addition of glass increases ULTEM 1000’s dimensional stability by almost three times.

 

For over three decades, AIP has provided flight control, fuel system, interior, engine and aerodynamic-related ULTEM components for various aircraft OEM and MRO providers worldwide.  As this industry continues to expand, evolve and innovate, the demand for high-performance materials like ULTEM contribute significantly to streamlined operations.

 

WHAT CAN ULTEM DO FOR MEDICAL & LIFE SCIENCES?

 

In the Medical Industry, biocompatibility and sterilization are paramount to medical instruments and implants. ULTEM is often a popular choice in this sector due to its resistance to chemicals and lipids.  Polyetherimide also withstands dry heat sterilization at 356°F (180°C), ethylene oxide gas, gamma radiation and steam autoclave.

 

Some popular medical applications include disposable and re-usable medical devices and medical monitor probe housings.  These could be surgical instrument handles and enclosures or non-implant prostheses.  It gets extensive use in membrane applications due to its separation, permeance and biocompatible properties.

 

WHAT CAN ULTEM DO FOR SPECIALIZED INDUSTRIAL Sectors?

 

At AIP, we precision machine ULTEM for many specialized industrial applications as well: automotive, electrical and metal replacement, to name a few.  Despite the diversity of these industrial applications, we have the inventory and machining capabilities to provide solutions for any project specifications.

 

PEI is most often used in electrical and lighting systems in the automotive market for its high heat resistance, mechanical integrity and strength.  Principal automotive applications include: transmission parts, throttle bodies, ignition components, thermostat housings, bezels, reflectors, lamp sockets and electromechanical systems.

 

The electrical and electronic markets demand high heat resistant materials.  ULTEM is an excellent choice for applications such as electrical circuit boards, switches, connectors, electronic chips and capacitors.

 

As discussed previously, thermoplastics like ULTEM often replace metal parts in industrial applications.  For this reason, it’s often used in housewares, especially fluid handling systems.  Some of these applications are: HVAC equipment, microwave cookware, steam and curling irons, dual-ovenable trays for food packaging that meets FDA food packaging requirements.

 

What can AIP Precision Machining do for you?

 

From concept to completion, our team of engineers will work with you to realize the final product.  With some of the fastest lead times in the industry, our unrivaled technical experts we can tackle your polymer challenges.

 

What Can This Polymer Do? Supportive Information

 

Medical Sector Biomaterials Guide

Energy Sector Materials Guide

Aerospace Sector Materials Guide

Amorphous Materials

Aerospace Case Study: Weight-saving Polymers

 

 

CUSTOMIZED FOR YOUR APPLICATION

Schedule a Consultation.

Follow AIP Precision Machining on Linkedin

linkedin logo

This post was originally published in August 2017 and updated in March 2019.

 

When in need of a custom-machined component for a project, choosing a metallic material may be the instinctive consideration to the design engineer. This article is intended to provide educational insight as to a more sensible alternative for precision-machined, high-strength, durable parts: machined polymers and composites. Let’s explore the benefits of opting for a plastic material versus the more traditional metal materials for precision parts.

 

Benefits Across the Board

 

Machined polymer and composite components are the most cost-effective solution when compared to metal.

 

Machined plastic parts are lighter and therefore provide immense advantages over metals by offering lower lifetime freight costs for equipment that is regularly transported or handled over the product’s lifetime. In bearing and wear applications, polymers provide extensive advantages over metals by allowing for lower power motors for moving parts due to lower frictional properties of polymer wear components compared to metals. The low frictional properties provide for less wear as well. The lower wear rates allow for less maintenance-related downtime. Now your equipment can be online longer producing you more profit. Not only are plastics lighter, but they’re also less expensive than many raw metal materials used for parts. Plastics are produced in faster cycles than metals which helps keep manufacturing costs down as well.

 

Plastics are more resistant to chemicals than their metal counterparts.

 

Without extensive and costly secondary finishes and coatings, metals are easily attacked by many common chemicals. Corrosion due to moisture or even dissimilar metals in close contact is also a major concern with metal components. Polymer and composite materials such as PEEK, Kynar, Teflon, and Polyethylene are impervious to some of the harshest chemicals. This allows for the manufacture and use of precision fluid handling components in the chemical and processing industries which would otherwise dissolve if manufactured from metallic materials. Some polymer materials available for machining can withstand temperatures over 700°F (370°C).

 

Plastic parts do not require post-treatment finishing efforts, unlike metal.


Polymer and composites are both thermally and electrically insulating. Metallic components require special secondary processing and coating in order to achieve any sort of insulating properties. These secondary processes add cost to metallic components without offering the level of insulation offered by polymer materials. Plastic and composite components are also naturally corrosion resistant and experience no galvanic effects in a dissimilar metal scenario that require sheathing. Unlike metals, plastic materials are compounded with color before machining, eliminating the need for post-treatment finishing efforts such as painting.

 

Let’s Break It Down by Industry

 

The benefits and features of plastic materials over metals discussed above span across multiple industries, showcasing the utility and versatility that plastic brings to the table.

 

Aerospace & Defense

 

  • Lightweight: Polymer and composite materials are up to ten times lighter than typical metals. A reduction in the weight of parts can have a huge impact on an aerospace company’s bottom line. For every pound of weight reduced on a plane, the airline can realize up to $15k per year in fuel cost reduction.

 

  • Corrosion-Resistant: Plastic materials handle far better than metals in chemically harsh environments. This increases the lifespan of the aircraft and avoids costly repairs brought about by corroding metal components an in-turn reducing MRO downtime provides for more operational time per aircraft per year.

 

  • Insulating and Radar Absorbent: Polymers are naturally radar absorbent as well as thermally and electrically insulating.

 

  • Flame & Smoke Resistances: High-performance thermoplastics meet the stringent flame and smoke resistances required for aerospace applications.

 

Learn More

 

Medical & Life Sciences

 

  • Sterility: In the medical industry, cleanliness is vital when it comes to equipment. Infection is the greatest threat facing hospital patients. Polymer and composite materials are easier to clean and sterilize than metal.

 

  • Radiolucency: Radiolucency is the quality of permitting the passage of radiant energy, such as x-rays, while still offering some resistance to it. Surgical instruments and components manufactured from polymer materials allow the surgeon a clear unobstructed view under fluoroscopy. This allows for safer, more precise surgeon outcomes in the OR. Metal instruments impede the surgeon’s view.

 

  • Lightweight: Plastic and composite surgical components allow orthopedic OEMs to meet ergonomic weight limits for surgical trays. Each metallic instrument adds weight and strain to the surgical team carrying and using metal instruments.

 

  • Reduced Stress-Shielding: Stress shielding occurs when metal implants and bone don’t become one nor work in unison. In medical-grade polymers like PEEK, however, its similar modulus to bone “fuses” with the bone into a single construct.

 

Learn More

 

Specialized Industrial

 

  • High Tensile Strength: Several lightweight thermoplastics can match the strength of metals, making them perfect for industrial equipment metal part replacement.

 

  • Chemical & Corrosion Resistances: Semiconductor equipment and electronics require survival in extreme, high-pressure environments.

 

  • Flexibility & Impact Resistance: Polymers are resistant to impact damage, making them less prone to denting or cracking the way that metals do.

 

  • Excellent Bearing & Wear Properties: Bearing-grade plastics can withstand repeated friction and wear for your high-load solutions.

 

Learn More

 

Power & Energy

 

  • Weight, corrosion, and sealing: Plastic materials allow the oil and gas industry to explore deeper depths than ever before by offering tool weight reduction without a loss of strength as well as materials which offer superior sealing attributes.

 

  • Superior Insulation: Naturally insulating plastics provide for superior thermal and electrical insulation over metals, which is a must for power generation equipment that deals with electrical currents.

 

  • Chemical, Wear & Corrosion Resistances: Plastic components with a strong chemical, wear and corrosion resistances reduce downtime and yield long-lasting performance and reliability.

 

  • Extreme Water & Earth Depth Capabilities: These qualities are necessary for high pressure and temperature applications that involve surviving extreme environments.

 

Learn More

 

As you can see, plastics have a variety of unique attributes which place them above metals in terms of utility, cost-effectiveness and flexibility for precision-machined components. Search specific plastic materials and their applications per industry with our useful material search function.

 

Download Our Plastics Over Metals Infographic

Take Our Material Expertise with You.

Download Now

Follow AIP Precision Machining on Linkedin

linkedin logo

An Informational Brief on Polymer Machining

 

Delrin®, also commonly known as an acetal (polyoxymethylene) homopolymer, is an impact and wear resistant semi-crystalline thermoplastic popular for a broad range of machining applications. To list just a few of its impressive qualities, Delrin offers great stiffness, flexural modulus, and high tensile and impact strength.

Our latest machining guide discusses what goes into machining Delrin and how its considerations differ from other manufacturing options such as metal machining, injection molding, and 3D printing.

How does AIP approach Delrin and its machining process? To start, we’ll explain the difference between machining Delrin, a thermoplastic, and machining thermosets.

 

Machining Thermoplastics vs Thermosets

 

We’ve already said that Delrin is a thermoplastic, but what does that mean exactly?

All polymers can more or less be divided into two categories: thermoplastics and thermosets. The main difference between them is how they react to heat. Thermoplastics like Delrin, for example, melt in the heat, while thermosets remain “set” once they’re formed. Understanding the technical distinction between these types of materials is essential to CNC machining them properly.

What type of thermoplastic is Delrin in particular? Acetal homopolymer is a semicrystalline, engineering thermoplastic.

 

Properties & Grades of Machined Delrin

 

This strong, stiff and hard acetal homopolymer is easy to machine and exhibits dimensional stability and good creep resistance, among several other desirable qualities. Delrin is also known for its superior friction resistance, high tensile strength, and its fatigue, abrasion, solvent and moisture resistance.

The latter quality allows Delrin to significantly outperform other thermoplastics like Nylon in high moisture or submerged environments without losing high-performance in the process. In other words, Delrin can retain its low coefficient of friction and good wear properties in wet environments.

One of the main reasons for Delrin’s popularity is its sheer versatility. The above blend of unique qualities makes Delrin broadly applicable to various industries in the medical, aerospace and energy sectors. For example, you can machine Delrin for medical implants and instruments, or for industrial bearings, rollers, gears, and scraper blades. It is ideal for smaller applications at temperatures below 250 °F (121°C) and can have centerline porosity.

Some of the Delrin grades we regularly machine at AIP include:

 

PTFE-Filled Acetals

 

PTFE (polytetrafluoroethylene) filled grades of Delrin is ideal where impact strength and wear capability are of the highest importance.

 

Glass-Reinforced Acetals

 

Acetals that are reinforced with glass have a much higher strength and greater heat resistance than other grades of Delrin.

 

FDA-Compliant Acetals

 

There are FDA-compliant grades of Delrin available for use in medical and food-related applications.

 

Machining Delrin

 

Machining Delrin

 

It’s true that Delrin is an easy material to work with in terms of machining. It is a very stable material, which makes precise, tight tolerances easier to achieve for this thermoplastic.

While machining, keep in mind that Delrin is sensitive to heat at or above 250 °F (121°C).

Balance the material removal as best as you can to keep your dimensions stable.

We also suggest non-aromatic, air-based coolants to achieve optimum surface finishes and close tolerances. Coolants have the additional benefit of extending tool life as well.

 

Preventing Contamination

 

Contamination is a serious concern when machining polymer components for technically demanding industries such as medical and life sciences. To ensure the highest level of sanitation down to the sub-molecular level, AIP Precision Machining designs, heat-treats, and machines only plastics, with any sub-manufactured metalwork processed outside our facility.

 

Delrin Machining Guide: Supportive Information

 

General Engineering Materials

Want to learn more about AIP’s polymer and composite materials?

or request a quote here.

Follow AIP Precision Machining on Linkedin

linkedin logo

AIP explains the advantages of using plastics over metals in our infographic below, with special emphasis on how each industry benefits from using polymers. Read on to learn all about it from the plastics professionals.

 

Follow AIP Precision Machining on Linkedin

linkedin logo

Where Does This Part Go?

PPS Wheel Bushing | AIP Precision Machining

 

If you’ve been to a popular Florida amusement park, then it’s possible you’ve encountered the latest part starring in our “Where Does This Part Go?” series.

Find out why this part really makes a “splash” in the section below…

Follow AIP Precision Machining on Linkedin

linkedin logo

An Informational Brief on Polymer Machining

 

Did you know that PPS (or Polyphenylene sulfide) products offer the broadest resistance to chemicals of any high-performance thermoplastic? It’s no surprise that this makes them a popular choice for industrial applications such as wheel bushings, chemical pumps, and compound clamp rings for semiconductor wafers.

 

What goes into machining this thermoplastic, however, and how does it differ from metal machining, injection molding, or 3D printing?

 

With Machining PPS: A Plastics Guides, AIP provides you with a guide to this material and its machining process. First, let’s start with the basics: thermoplastics vs thermosets.

 

 

Machining Thermoplastics vs Thermosets

 

We’ve already said that PPS is a thermoplastic, but what does that mean exactly?

 

All polymers can more or less be divided into two categories: thermoplastics and thermosets. The main difference between them is how they react to heat. Thermoplastics like PPS, for example, melt in heat, while thermosets remain “set” once they’re formed. Understanding the technical distinction between these types of materials is essential to CNC machining them properly.

 

What type of thermoplastic is PPS in particular? It’s a semi-crystalline, high-performance thermoplastic that has an extremely stable molecular structure. The chemical resistance of PPS is often compared to PEEK  and fluoropolymers.

 

 

Properties & Grades of Machined PPS

 

There’s a lot to like about PPS’s material properties. As we mentioned before, PPS has exceptional chemical resistance that makes its bearing grades especially favorable for the chemical industry or caustic environments. In particular, its resistance to acids, alkalis, ketones, and hydrocarbons lend PPS stellar structural performance in harsh chemicals.

 

Additionally, PPS materials are inert to steam as well as strong bases, fuels and acids. Combine that with a low coefficient of thermal expansion and zero moisture absorption, and you get a material that is ideal for continuous use in corrosive or hostile environments. PPS has replaced stainless steel for a lot of industrial applications for this reason.

 

Most impressively, PPS will not dissolve at temperatures below approximately 200 °C, no matter what solvent is used. In fact, all grades of PPS share UL94 V-0 flammability ratings, without requiring flame retardant additives, resulting in an excellent material for aircraft where flame resistance is paramount.

 

Some grades of PPS that we regularly machine at AIP Precision Machining include Ryton®, Fortron®, TECHTRON®, TECTRON® HPV, TECATRON PVX and TECATRON CMP.

 

 

Machining PPS

 

Annealing PPS

The process of annealing and stress-relieving PPS reduces the likelihood of surface cracks and internal stresses occurring in the material. Post-machining annealing also helps to reduce stresses that could potentially contribute to premature failure. AIP’s special annealing process for PPS is designed to take the specific properties of PPS into account, and we advise anyone working with PPS to hire a manufacturer that understands its unique demands.

 

Machining PPS

PPS is a fantastic material for machining. Its low shrinkage and stable dimensional properties make it easy to machine to incredibly tight, precise tolerances. A unique characteristic of PPS is that when dropped, it sounds just like a piece of metal hitting the floor.

 

PPS, like many other thermoplastics, is notch sensitive, so take care to avoid sharp corners in design. We recommend carbide tipped cutting tools for working with PPS as they provide an ideal speed and surface finish.

 

We also suggest non-aromatic, water-soluble coolants, such as pressurized air and spray mists, to achieve optimum surface finishes and close tolerances. Coolants have the additional benefit of extending tool life as well. No known coolants attack nor degrade PPS.

 

Preventing Contamination

Contamination is a serious concern when machining polymer components for technically demanding industries such as aerospace. To ensure the highest level of sanitation down to the sub-molecular level, AIP Precision Machining designs, heat-treats, and machines only plastics, with any sub-manufactured metalwork processed outside our facility.

 

To learn more, read our article “Three Ways to Ensure Sterilization in Your Plastic Machined Medical Applications.”

 

 

PPS Machining Guide: Supportive Information

Chemical Resistant Materials Guide

Energy Sector Materials Guide

Aerospace Sector Materials Guide

 

Explore Our Inventory

Follow AIP Precision Machining on Linkedin

linkedin logo

An Informational Brief on Polymer Machining

 

AIP Precision Machining has worked with many thermoplastics over the past three decades, including TORLON: a PAI, or polyamide-imide, engineered by Solvay Specialty Polymers.

 

Due to its reliable performance at severe levels of temperature and stress, TORLON is ideal for critical mechanical and structural components of jet engines, automotive transmissions, oil recovery, off-road vehicles and heavy-duty equipment.

 

AIP has over 35 years of experience machining complex components from TORLON and various other thermoplastic materials. We are providing this Machining TORLON Guide as yet another insightful technical brief about our polymer component manufacturing process, and how it differs from that of metal machining, injection molding, or 3D printing.

 

Plastic CNC Machining

Before discussing the process of machining TORLON, it’s important to understand exactly what plastic machining is.

 

CNC (Computer Numerical Control) machining is a process in the manufacturing sector that involves the use of computers to control machine tools. In the case of plastic machining, this involves the precise removal of layers from a plastic sheet, rod, tube or near net molded blank.

 

The early history of CNC machining is almost as complex as a modern CNC system. The earliest version of computer numerical control (CNC) technology was developed shortly after World War II as a reliable, repeatable way to manufacture more accurate and complex parts for the aircraft industry. Numerical control—the precursor to CNC—was developed by John Parsons as a method of producing integrally stiffened aircraft skins.

 

Parsons, while working at his father’s Traverse City, Michigan-based Parsons Corp., had previously collaborated on the development of a system for producing helicopter rotor blade templates. Using an IBM 602A multiplier to calculate airfoil coordinates, and inputting this data to a Swiss jig borer, it was possible to produce templates from data on punched cards.

 

Parsons’ work lead to numerous Air Force research projects at the Massachusetts Institute of Technology (MIT) starting in 1949. Following extensive research and development, an experimental milling machine was constructed at MIT’s Servomechanisms Laboratory.

 

Due to the many different kinds of polymers and composites, it’s important to have strong technical expertise of polymer materials when machining plastic components; some plastics are brittle, for example, while others cut similarly to metal. The challenge of plastics is their wide range of mechanical and thermal properties which result in varying behavior when machined. Therefore, it’s important to understand the polymer structure and properties of TORLON if you’re machining it.

 

Thermoplastics vs Thermosets

When it comes to polymers, you have two basic types: thermoplastics and thermosets. It’s crucial to know which one you’re working with due to distinct differences between how these two main polymer categories react to chemicals and temperature.

 

Thermoplastics soften when heated and become more fluid as additional heat is applied. The curing process is completely reversible as no chemical bonding takes place. This characteristic allows thermoplastics to be remolded and recycled without negatively affecting the material’s physical properties.

 

They possess the following properties:

• Good Resistance to Creep

• Soluble in Certain Solvents

• Swell in Presence of Certain Solvents

• Allows for Plastic Deformation when Heated

 

Thermosets plastics contain polymers that cross-link together during the curing process to form an irreversible chemical bond. The cross-linking process eliminates the risk of the product re-melting when heat is applied, making thermosets ideal for high-heat applications such as electronics and appliances.

 

They possess the following properties:

• High Resistance to Creep

• Cannot Melt

• Insoluble

• Rarely Swell in Presence of Solvents

 

Phenolic, Bakelite, Vinyl Ester and Epoxy materials would be considered examples of a thermoset, while ULTEM, PEEK, DELRIN and Polycarbonate materials are examples of thermoplastics.

The thermoplastic category of polymers is further categorized into Amorphous and Crystalline polymers per the figure below:

 

Machining Ultem
 

TORLON is considered an amorphous, high-performance thermoplastic. Most amorphous polymers are thermoform capable, translucent and easily bonded with adhesives or solvents.

 

 

Various Grades of Machined TORLON

 

What makes TORLON unique is how it possesses both the incredible performance of thermoset polyimides and the melt-processing advantages of thermoplastics. The compressive strength of (unfilled) TORLON PAI is double that of PEEK and 30% higher than that of ULTEM PEI. In fact, TORLON is considered the highest performing, melt-processible plastic.

 

High-strength grades of TORLON retain their toughness, high strength and high stiffness up to 275°C. This and its impressive wear resistance allow TORLON to endure in hostile thermal, chemical and stress conditions considered too severe for other thermoplastics. TORLON is also resistant to automotive and aviation fluids, making it a favorite of aerospace and automotive engineers.

 

One concern of using TORLON is that its moisture absorption rate is not as low as other high-performance plastics, so special care should be taken when designing components for wet environments.

 

There’s more than one particular type of TORLON PAI you can machine, and each has slightly different properties for perfecting this material’s use in different applications.

 

Here are several grades of TORLON PAI we machine regularly at AIP Precision Machining.

 

TORLON 4203

TORLON 4203 is the unfilled or natural grade of TORLON PAI that outperforms other grades with the best impact resistance and the most elongation. TORLON 4203 PAI can be used for a variety of applications but due to its good electrical properties, it is commonly machined for electronic equipment manufacturing, valve seals, bearings and temperature test sockets.

 

TORLON 4301

TORLON 4301 is a wear-resistant grade of TORLON PAI containing PTFE and graphite. It has high flexural and compressive strength with a low coefficient of friction, as well as good mechanical properties. Typical applications of 4301 are anything that requires strength at high temperature with wear resistance and low friction. This material is useful for parts such as thrust washers, spline liners, valve seats, bushings, bearings and wear rings.

 

TORLON 4XG

TORLON 4XG is a 30% glass-reinforced extruded grade of PAI well suited to higher load structural or electronic applications. When you need a high degree of dimensional control, this grade offers the high-performance you need. Various uses of TORLON 4XG include burn-in sockets, gears, valve plates, impellers, rotors, terminal strips and insulators, among others.

 

TORLON 4XCF

TORLON 4XCF is a 30% carbon-reinforced extruded grade of PAI that has the lowest coefficient of thermal expansion and the most impressive fatigue resistance of all plastic materials. This uncommon grade works well as a replacement for metal applications as well as mission-critical aerospace components, in addition to impellers, shrouds and pistons.

 

 

Machining TORLON

 

Annealing TORLON
TORLON PAI can be received in the form of rods, sheets, tube or film. Stress-relieving before machining through an annealing process is crucial, as it reduces the likelihood that surface cracks and internal stresses will occur from the heat generated. This also helps prevent any warping or distortion of your plastic materials.

 

TORLON additionally benefits from post-machining annealing to reduce any stress that could contribute to premature failure. Extruded TORLON parts, such as those machined from TORLON 4XCF and TORLON 4XG, benefit from an additional cure after machining to further enhance wear resistance; this is unique to PAI. Proper annealing of Torlon can require more than seven days in special ovens at AIP.

 

If the machine shop you are working with does not have a computer controlled annealing oven for plastics, then “head for dee hills” as they are obviously not TORLON machining experts.

 

Machining TORLON

An important consideration to have when machining TORLON PAI is how abrasive it is on tooling. If you’re machining on a short run, carbide tooling can be used, but polycrystalline (PCD) tooling should be considered for lengthier runs, machining for tight tolerance and any time you are working with reinforced grades.

 

Another thing to keep in mind when machining extruded TORLON shapes is that they have a cured outer skin, which is harder than interior sections. The outer skin offers the best wear and chemical resistance. If wear resistance and chemical resistance needs to be optimized, extruded TORLON should be re-cured.

 

TORLON PAI will nearly always require the use of coolants due to its stiffness and hardness. Non-aromatic, water-soluble coolants are most suitable for ideal surface finishes and close tolerances. These include pressurized air and spray mists. Coolants have the additional benefit of extending tool life as well.

 

Many metal shops use petroleum-based coolants, but these types of fluids attack TORLON. Many past experiences have shown parts going to customer without cracks, only to develop cracks over time due to exposure to metal machine shop fluids. Be sure to use a facility like AIP who machines polymers and only polymers.

 

Preventing Contamination

Contamination is a serious concern when machining polymer components for technically demanding industries such as aerospace and medical. To ensure the highest level of sanitation down to the sub-molecular level, AIP Precision Machining designs, heat-treats and machines only plastics, with any sub-manufactured metalwork processed outside our facility.

 

 

TORLON Machining Guide: Supportive Information

Medical Sector Biomaterials Guide

Energy Sector Materials Guide

Aerospace Sector Materials Guide

Amorphous Materials

 

 

Explore Our Inventory

 

or request a quote here.

Follow AIP Precision Machining on Linkedin

linkedin logo

An Informational Brief on Polymer Machining

MACHINING PEEK

 

The recent popularity of PEEK (polyetheretherketone) in complex industries such as Aerospace & Defense and Medical & Life Sciences is well documented, and for good reason: this lightweight thermoplastic bears properties that make it ideal for a variety of specialized applications. This versatility makes PEEK equally capable of being used for implants and custom medical devices or machined lightweight aircraft components.

 

What is less known, however, is the process that goes into machining this plastic material. With over 35 years of experience machining this thermoplastic material, we at AIP have written a brief introduction to machining PEEK. We hope this gives you some insight into our polymer machining process, and how it differs from that of metal machining or injection molding.

 

Plastic CNC Machining

 

Before discussing the process of machining PEEK, it’s important to understand exactly what plastic machining is.

 

CNC (Computer Numerical Control) machining is a process in the manufacturing sector that involves the use of computers to control machine tools. In the case of plastic machining, this involves the precise removal of layers from a plastic material. The technique of utilizing drilling tools to carve plastics was introduced by MIT during the 1950s, and because this process is computer-controlled, products with extremely precise tolerances can be achieved.

 

Due to the many different kinds of polymers and composites, it’s important to have strong technical expertise of polymer materials when machining plastic components; some plastics are brittle, for example, while others cut similarly to metal. The challenge of plastics is their wide range of mechanical properties and varying behavior when machined. Therefore, it’s important to understand the polymer structure of PEEK if you’re machining it.

 

Thermoplastics vs Thermosets

 

When it comes to polymers, you have two basic types: thermoplastics and thermosets. It’s crucial to know which one you’re working with due to distinct differences between how those polymers react to heat and temperature.

 

Thermoplastics are capable of being repeatedly softened and pliable when temperature increases, meaning that when heat is applied, that results in a physical change for the polymer. They possess the following properties:

 

  • – Good Resistance to Creep
  • – May Melt Before Turning to Gaseous State
  • – Soluble in Certain Solvents
  • – Swell in Presence of Certain Solvents
  • – Allows for Plastic Deformation when Heated

 

Thermosets, in contrast, turn into an infusible and insoluble material when cured by application of heat or chemical means, making for poor elasticity. They possess the following properties:

 

  • – High Resistance to Creep
  • – Cannot Melt
  • – Insoluble
  • – Rarely Swell in Presence of Solvents

 

Phenolic materials would be considered examples of a thermoset, while PEEK is an example of a thermoplastic.

 

In particular, PEEK is considered a semi-crystalline, high-performance thermoplastic. This gives it enough elasticity to be machined to various custom designs, with strong mechanical properties that provide resistance to fatigue and stress-cracking, as well as a good structure for bearing, wear, and structural applications.

 

Industrial Grade vs Medical Grade PEEK Machining

 

Depending on your application, you’ll want to machine either industrial-grade PEEK or medical-grade PEEK.

 

Industrial-grade PEEK is a strong, flame-retardant and abrasion resistant thermoplastic with high impact strength and a low coefficient of friction. It’s known for retaining its mechanical properties, even at elevated temperatures. As suggested by its name, this grade is most commonly used in aerospace, automotive, chemical, electronics, petroleum, as well as food and beverage industries.

 

Medical-grade PEEK adds biocompatibility per ISO 10993, high chemical resistance, and sterilization compatibilities to the above list of qualities. In addition, this thermoplastic is radiolucent, meaning it is not visible under X-ray, MRI or CT. Medical-grade PEEK includes polymers suitable for implants, such as PEEK Optima and Zeniva PEEK, which can stay in contact with blood or tissue indefinitely while mimicking the stiffness of bone. Other variations of medical-grade PEEK can be used for custom medical components and applications, such as articulating joints and spinal devices.

 

Machining PEEK

 

Annealing PEEK

 

Most shops receive PEEK in the form of rods of various lengths, ranging from 6mm to 150mm in diameter. Stress-relieving before machining through an annealing process is crucial, as it reduces the likelihood that surface cracks and internal stresses will occur from the heat generated. Additional benefits of annealing include increased levels of crystallinity and the opportunity to limit dimensional changes.

 

If your PEEK components will undergo long stretches of machining time, it is likely you will require additional intermediate annealing steps to assure the ability to maintain critically tight tolerances and flatness.

 

Machining Industrial-Grade & Medical-Grade PEEK

 

Both industrial-grade and most medical-grade PEEK machine similarly, save for PEEK reinforced with carbon fiber. Silicon carbide cutting tools work well for natural PEEK, while diamond tools work well for PEEK reinforced with carbon-fiber.

 

For medical-grade PEEK applications, the best way to avoid jeopardizing the biocompatibility of the material is to machine dry. However, PEEK doesn’t dissipate heat the way that metals do, so often a coolant is necessary. In that case, air is the coolant option least likely to affect medical-grade PEEK’s biocompatibility. Any chips that are a result of machining medical-grade PEEK can be reused for industrial applications.

 

Preventing Contamination

 

Contamination is a serious concern when machining polymer components for technically demanding industries such as aerospace and medical. To ensure the highest level of sanitation down to the sub-molecular level, AIP Precision Machining designs, heat-treats, and machines only plastics, with any sub-manufactured metalwork processed outside our facility.

 

PEEK Machining Guide: Guidelines

(Courtesy of Invibio)

 

Natural PEEK

Carbon-Fiber-Reinforced PEEK

blank
SawingblankPreheat material to 120 C degrees
Clearance angle—degrees15 to 3015 to 30
Rake angle—degrees0 to 510 to 15
Cutting speed—m/min500 to 800200 to 300
Pitch—mm3 to 53 to 5
DrillingblankPreheat material to 120 C degrees
Clearance angle—degrees5 to 106
Rake angle—degrees10 to 305 to 10
Cutting speed—m/min50 to 20080 to 100
Feed rate—mm/rev0.1 to 0.30.1 to 0.3
MillingblankNo material preheat is necessary
Clearance angle—degrees5 to 1015 to 30
Rake angle—degrees10 to 3010 to 15
Cutting Speed—m/min50 to 200200 to 300
TurningblankNo material preheat is necessary
Clearance angle—degrees6 to 86 to 8
Rake angle—degrees0 to 52 to 8
Cutting speed—m/min250 to 500150 to 200
Feed rate—mm/rev0.1 to 0.50.1 to 0.5

 

PEEK Machining Guide: PEEK Variants

 

Peek-Variants-Guide

Click to Enlarge

Follow AIP Precision Machining on Linkedin

linkedin logo