Learn about the re-useable capabilities of precision plastics

 

In the world of recycling, plastic tends to have a bad reputation or it gets whispered like a dirty word.  Indeed, according to the UN Environment Programm, one million plastic drinking bottles are purchased every minute.  This is certainly a disturbing statistic, and we are tasked with addressing the consequences of this waste.  However, it is important to distinguish the type of plastics causing severe pollution.  Plastic bottles and plastic bags are single-use, disposable plastics.  These are the ones that are clogging up the environment.

 

What people don’t discuss often is plastics that are re-usable and recyclable.  At AIP, the plastics that we precision machine are high grade, quality polymers made for durability and continuous use in the following industries: Aerospace and Defense; Medical and Life Sciences; Power and Energy; Specialized Industrial.  That means they are evergreen materials that will not only last, but could be repurposed for a different application altogether.  Read on to find out about some of the high-performance polymers we work with, what they are used for and how they can be recycled.

 

Everyday Sustainable Precision Plastics
PolymerPropertiesAIP’s Machined Applications
PPSBroadest chemical resistance; zero moisture absorption; dimensional stability; ultra-low wear factors and structural strength

*available in several grades

Case Study: High-quality PPS wheel bushings for a theme park water ride.

  • Reduced ride downtime
  • Saved on maintenance and inventory costs
  • Lower energy cost
  • Efficient design
  • Low-wear
TORLONHighest performing, melt-processible plastic; maintains strength and stiffness up to 500 F; chemical, thermal and stress resistance

*available in several grades

Ideal for critical mechanical and structural components for severe levels of temperature and stress

  • Jet Engine Components
  • High Temperature Electrical Connectors
  • Automotive Transmission components
  • Wear Rings in Oil Recovery
  • Valve Seats
PEEKBiocompatible; abrasion and chemical resistant; low moisture absorption; very low smoke and toxic gas emission

*available in several grades

Case Study: PEEK Dynamic Telescopic Craniotomy (skull plate for brain traumas

  • Reduced ride downtime
  • Saved on maintenance and inventory costs
  • Lower energy cost
  • Efficient design
  • Low-wear
RADELImpact resistance; hydrolytic stability; excellent toughness; chemical resistance; heat deflection temperature of 405 F (207 C)
ULTEMExcellent heat and flame resistance; high rigidity and strength; low thermal conductivity; highest dielectric strength

*available in several grades

Used as structural components in several industries

  • High-voltage circuit-breaker housings
  • High-temperature bobbins, coils, fuse blocks and wire coatings
  • Jet-engine components
  • Aircraft interior and electrical hardware parts
  • Microwave applications
  • Replaces glass in medical lamps

 

Thermoplastics – The Green Plastic

 

There are two types of polymers – thermoplastics and thermosets.  The plastics that we work with primarily at AIP are thermoplastics.  So, what’s a thermoplastic and how is it re-usable or recyclable?

 

It’s all about how the polymer reacts to chemicals and temperature.  Thermoplastics soften when heated and become more fluid, which makes them a very flexible polymer.  For this reason, these plastics can be remolded and recycled without losing their mechanical properties or dimensional stability.  Let’s go in depth on some of the common thermoplastics we use for evergreen applications.

 

The AIP case study focusing on the use of PPS for the log flume ride bushing component is an excellent example of a thermoplastic built and machined for continuous use.  The bushing made from PPS could be used over and over again without wear.  Furthermore, it could be immersed in water and other chemicals without losing dimensionality or durability.

 

PEEK and ULTEM are both common polymers we machine at AIP.  With PEEK’s high chemical resistance and biocompatibility, it is ideal for surgical applications such as the Dynamic Telescopic Craniotomy Case Study.  This polymer can withstand the internal temperatures and fluids of the body for extended use.

 

ULTEM is known for its strength and rigidity in extreme environments and temperatures.  This polymer is often used for re-useable medical instruments, since it reacts well to autoclave sterilizations.  Additionally, it’s flammability rating and dimensional stability make it ideal as a weight-saving aerospace component.

 

As the plastics industry continues to innovate, the next generation of research will turn towards more sustainable and environmentally conscious materials.  Thermoplastics are one of the pioneers of this industry – leading plastics into the future as a material that can be reused and recycled.

 

Unrivaled Expertise. Unparalleled Results

 

With 36+ years of experience in the industry, our dedicated craftsmen and ties to leading plastic manufacturers allow us to provide you with unrivaled knowledge and consulting in material selection, sizing, manufacturing techniques and beyond to best meet your project needs.

 

AIP offers a unique combination of CNC machining, raw material distribution, and consultancy as a reliable source for engineering information for materials such as PEEK, TORLON, ULTEM and more.

 

We are AS 9100D compliant; certified and registered with ISO 13485 and ISO 9001 and standards in our commitment to machining quality custom plastic components for specialized industrial sectors. Quality assurance is included as an integral part of our process and is addressed at every step of your project, from concept to completion.  Unrivaled Expertise.  Unparalleled Results.

 

 

READY FOR A CONSULTATION?

Tell us about your unique project’s specifications, and we’ll get the job done quickly and efficiently at a competitive price.

or request a quote here.

Follow AIP Precision Machining on Linkedin

linkedin logo

This post was originally published in August 2017 and updated in March 2019.

 

When in need of a custom-machined component for a project, choosing a metallic material may be the instinctive consideration to the design engineer. This article is intended to provide educational insight as to a more sensible alternative for precision-machined, high-strength, durable parts: machined polymers and composites. Let’s explore the benefits of opting for a plastic material versus the more traditional metal materials for precision parts.

 

Benefits Across the Board

 

Machined polymer and composite components are the most cost-effective solution when compared to metal.

 

Machined plastic parts are lighter and therefore provide immense advantages over metals by offering lower lifetime freight costs for equipment that is regularly transported or handled over the product’s lifetime. In bearing and wear applications, polymers provide extensive advantages over metals by allowing for lower power motors for moving parts due to lower frictional properties of polymer wear components compared to metals. The low frictional properties provide for less wear as well. The lower wear rates allow for less maintenance-related downtime. Now your equipment can be online longer producing you more profit. Not only are plastics lighter, but they’re also less expensive than many raw metal materials used for parts. Plastics are produced in faster cycles than metals which helps keep manufacturing costs down as well.

 

Plastics are more resistant to chemicals than their metal counterparts.

 

Without extensive and costly secondary finishes and coatings, metals are easily attacked by many common chemicals. Corrosion due to moisture or even dissimilar metals in close contact is also a major concern with metal components. Polymer and composite materials such as PEEK, Kynar, Teflon, and Polyethylene are impervious to some of the harshest chemicals. This allows for the manufacture and use of precision fluid handling components in the chemical and processing industries which would otherwise dissolve if manufactured from metallic materials. Some polymer materials available for machining can withstand temperatures over 700°F (370°C).

 

Plastic parts do not require post-treatment finishing efforts, unlike metal.


Polymer and composites are both thermally and electrically insulating. Metallic components require special secondary processing and coating in order to achieve any sort of insulating properties. These secondary processes add cost to metallic components without offering the level of insulation offered by polymer materials. Plastic and composite components are also naturally corrosion resistant and experience no galvanic effects in a dissimilar metal scenario that require sheathing. Unlike metals, plastic materials are compounded with color before machining, eliminating the need for post-treatment finishing efforts such as painting.

 

Let’s Break It Down by Industry

 

The benefits and features of plastic materials over metals discussed above span across multiple industries, showcasing the utility and versatility that plastic brings to the table.

 

Aerospace & Defense

 

  • Lightweight: Polymer and composite materials are up to ten times lighter than typical metals. A reduction in the weight of parts can have a huge impact on an aerospace company’s bottom line. For every pound of weight reduced on a plane, the airline can realize up to $15k per year in fuel cost reduction.

 

  • Corrosion-Resistant: Plastic materials handle far better than metals in chemically harsh environments. This increases the lifespan of the aircraft and avoids costly repairs brought about by corroding metal components an in-turn reducing MRO downtime provides for more operational time per aircraft per year.

 

  • Insulating and Radar Absorbent: Polymers are naturally radar absorbent as well as thermally and electrically insulating.

 

  • Flame & Smoke Resistances: High-performance thermoplastics meet the stringent flame and smoke resistances required for aerospace applications.

 

Learn More

 

Medical & Life Sciences

 

  • Sterility: In the medical industry, cleanliness is vital when it comes to equipment. Infection is the greatest threat facing hospital patients. Polymer and composite materials are easier to clean and sterilize than metal.

 

  • Radiolucency: Radiolucency is the quality of permitting the passage of radiant energy, such as x-rays, while still offering some resistance to it. Surgical instruments and components manufactured from polymer materials allow the surgeon a clear unobstructed view under fluoroscopy. This allows for safer, more precise surgeon outcomes in the OR. Metal instruments impede the surgeon’s view.

 

  • Lightweight: Plastic and composite surgical components allow orthopedic OEMs to meet ergonomic weight limits for surgical trays. Each metallic instrument adds weight and strain to the surgical team carrying and using metal instruments.

 

  • Reduced Stress-Shielding: Stress shielding occurs when metal implants and bone don’t become one nor work in unison. In medical-grade polymers like PEEK, however, its similar modulus to bone “fuses” with the bone into a single construct.

 

Learn More

 

Specialized Industrial

 

  • High Tensile Strength: Several lightweight thermoplastics can match the strength of metals, making them perfect for industrial equipment metal part replacement.

 

  • Chemical & Corrosion Resistances: Semiconductor equipment and electronics require survival in extreme, high-pressure environments.

 

  • Flexibility & Impact Resistance: Polymers are resistant to impact damage, making them less prone to denting or cracking the way that metals do.

 

  • Excellent Bearing & Wear Properties: Bearing-grade plastics can withstand repeated friction and wear for your high-load solutions.

 

Learn More

 

Power & Energy

 

  • Weight, corrosion, and sealing: Plastic materials allow the oil and gas industry to explore deeper depths than ever before by offering tool weight reduction without a loss of strength as well as materials which offer superior sealing attributes.

 

  • Superior Insulation: Naturally insulating plastics provide for superior thermal and electrical insulation over metals, which is a must for power generation equipment that deals with electrical currents.

 

  • Chemical, Wear & Corrosion Resistances: Plastic components with a strong chemical, wear and corrosion resistances reduce downtime and yield long-lasting performance and reliability.

 

  • Extreme Water & Earth Depth Capabilities: These qualities are necessary for high pressure and temperature applications that involve surviving extreme environments.

 

Learn More

 

As you can see, plastics have a variety of unique attributes which place them above metals in terms of utility, cost-effectiveness and flexibility for precision-machined components. Search specific plastic materials and their applications per industry with our useful material search function.

 

Download Our Plastics Over Metals Infographic

Take Our Material Expertise with You.

Download Now

Follow AIP Precision Machining on Linkedin

linkedin logo

AIP explains the advantages of using plastics over metals in our infographic below, with special emphasis on how each industry benefits from using polymers. Read on to learn all about it from the plastics professionals.

 

Follow AIP Precision Machining on Linkedin

linkedin logo