Strict Hygienic Procedures for Precision Machining

 

It’s no secret that cleanliness and sterilization are crucial for applications in the medical industry. Any manufacturer you hire for machining your plastic component should be aware of this, and taking actions to prevent any contamination from taking place.

 

Here are three ways you can ensure that your medical application is being precision machined by a manufacturer committed to following strict hygienic procedures.

 

1) Check Industry Standards

 

Ensuring sterilization starts with picking the right manufacturing company, and you’ll want to be sure they take the matter of contamination seriously. To start, check their commitment to quality management and industry standards.

 

All product manufacturing companies must follow industry standards like International Organization for Standardization (ISO) and Food and Drug Administration (FDA). Before you work with a manufacturing company for your medical application, look at their certifications.

 

For example, ISO 13485 specifies requirements for a quality management system where a company demonstrates it can provide medical devices and related services to consistently meet customer and regulatory requirements. ISO 9001 focuses on meeting customer expectations and continually delivering satisfaction, plus reflects constant improvement from the company.

 

If the manufacturer you are interested in using does not have any of the above standards, then you may want to ask them why.

 

Here at AIP Precision Machining, we have been successfully audited by some of the most stringent OEMs in the orthopedic and medical device industries, and are ISO 13485:2016., ISO 9001:2015 , and FDA registered.

 

2) Plastic Machining isn’t Metal MachiningMetal vs Plastic Machining

 

Be wary of any manufacturer who machines both plastics and metals in the same facility. The tiniest sliver of metal embedded in a plastic part can have widespread ramifications, such as an unexpected electrical problem in the medical device.

Additionally, it’s common for metal machining companies to use oil-based cutting fluids. Any equipment that machines metal, then, can contaminate your plastic parts with those fluids. Many plastic materials are especially sensitive to those petroleum-based liquids, and they can degrade when in contact with them; others are hydroscopic and will absorb the oils.

 

It should be noted that plastic parts manufactured using equipment that machines metal parts will not meet FDA-approval, or the other industry standards mentioned above. The safest way to avoid this is to hire a plastics expert, not a metal machining company.

 

AIP takes the matter of sterilization seriously, and ensures the highest level of sanitation down to the sub-molecular level for its products. By designing, stress relieving and machining only plastics, AIP significantly reduces the threat of metallic cross contamination and therefore allows for the highest hygienic products possible.

 

3) Look for Experience

 

The most important factor to take into account overall is experience. Your supplier should be familiar with the types of polymers and composites you need machined, and should additionally know the best machining process for your application.

 

For the medical industry, you want to know that your manufacturer is experienced with the complex needs of your applications. For example, if your components are going to come into contact with body tissue or fluids, then they must be biocompatible per ISO 10993.

 

Which is to say: If you’re machining implants, your plastics will require different needs than if you’re machining reusable surgical instruments. Both require, however, careful attention to detail. A surgical instrument must be designed with sterilization compatibility for regular cycles in mind, while an implant requires biocompatibility to be safe for use.

 

Be sure that your manufacturer is familiar with the processes that come with your application, and check that they’ve done it before.

With 35+ years of experience, AIP is well acquainted with precision machining for the medical industry and guarantees careful material selection and processing for your medical applications.

 

The #1 Best Way to Avoid Contamination?

Overall, the best thing you can do to avoid contamination is to hire a plastic manufacturer with the experience and the credentials to complete your project to the highest standards of quality possible. Keeping the above three factors in mind will help you do just that.

 

To ask about AIP Precision Machining’s capabilities for precision machining medical applications, please contact us.

Follow AIP Precision Machining on Linkedin

linkedin logo

An Informational Brief on Polymer Machining

MACHINING PEEK

 

The recent popularity of PEEK (polyetheretherketone) in complex industries such as Aerospace & Defense and Medical & Life Sciences is well documented, and for good reason: this lightweight thermoplastic bears properties that make it ideal for a variety of specialized applications. This versatility makes PEEK equally capable of being used for implants and custom medical devices or machined lightweight aircraft components.

 

What is less known, however, is the process that goes into machining this plastic material. With over 35 years of experience machining this thermoplastic material, we at AIP have written a brief introduction to machining PEEK. We hope this gives you some insight into our polymer machining process, and how it differs from that of metal machining or injection molding.

 

Plastic CNC Machining

 

Before discussing the process of machining PEEK, it’s important to understand exactly what plastic machining is.

 

CNC (Computer Numerical Control) machining is a process in the manufacturing sector that involves the use of computers to control machine tools. In the case of plastic machining, this involves the precise removal of layers from a plastic material. The technique of utilizing drilling tools to carve plastics was introduced by MIT during the 1950s, and because this process is computer-controlled, products with extremely precise tolerances can be achieved.

 

Due to the many different kinds of polymers and composites, it’s important to have strong technical expertise of polymer materials when machining plastic components; some plastics are brittle, for example, while others cut similarly to metal. The challenge of plastics is their wide range of mechanical properties and varying behavior when machined. Therefore, it’s important to understand the polymer structure of PEEK if you’re machining it.

 

Thermoplastics vs Thermosets

 

When it comes to polymers, you have two basic types: thermoplastics and thermosets. It’s crucial to know which one you’re working with due to distinct differences between how those polymers react to heat and temperature.

 

Thermoplastics are capable of being repeatedly softened and pliable when temperature increases, meaning that when heat is applied, that results in a physical change for the polymer. They possess the following properties:

 

  • – Good Resistance to Creep
  • – May Melt Before Turning to Gaseous State
  • – Soluble in Certain Solvents
  • – Swell in Presence of Certain Solvents
  • – Allows for Plastic Deformation when Heated

 

Thermosets, in contrast, turn into an infusible and insoluble material when cured by application of heat or chemical means, making for poor elasticity. They possess the following properties:

 

  • – High Resistance to Creep
  • – Cannot Melt
  • – Insoluble
  • – Rarely Swell in Presence of Solvents

 

Phenolic materials would be considered examples of a thermoset, while PEEK is an example of a thermoplastic.

 

In particular, PEEK is considered a semi-crystalline, high-performance thermoplastic. This gives it enough elasticity to be machined to various custom designs, with strong mechanical properties that provide resistance to fatigue and stress-cracking, as well as a good structure for bearing, wear, and structural applications.

 

Industrial Grade vs Medical Grade PEEK Machining

 

Depending on your application, you’ll want to machine either industrial-grade PEEK or medical-grade PEEK.

 

Industrial-grade PEEK is a strong, flame-retardant and abrasion resistant thermoplastic with high impact strength and a low coefficient of friction. It’s known for retaining its mechanical properties, even at elevated temperatures. As suggested by its name, this grade is most commonly used in aerospace, automotive, chemical, electronics, petroleum, as well as food and beverage industries.

 

Medical-grade PEEK adds biocompatibility per ISO 10993, high chemical resistance, and sterilization compatibilities to the above list of qualities. In addition, this thermoplastic is radiolucent, meaning it is not visible under X-ray, MRI or CT. Medical-grade PEEK includes polymers suitable for implants, such as PEEK Optima and Zeniva PEEK, which can stay in contact with blood or tissue indefinitely while mimicking the stiffness of bone. Other variations of medical-grade PEEK can be used for custom medical components and applications, such as articulating joints and spinal devices.

 

Machining PEEK

 

Annealing PEEK

 

Most shops receive PEEK in the form of rods of various lengths, ranging from 6mm to 150mm in diameter. Stress-relieving before machining through an annealing process is crucial, as it reduces the likelihood that surface cracks and internal stresses will occur from the heat generated. Additional benefits of annealing include increased levels of crystallinity and the opportunity to limit dimensional changes.

 

If your PEEK components will undergo long stretches of machining time, it is likely you will require additional intermediate annealing steps to assure the ability to maintain critically tight tolerances and flatness.

 

Machining Industrial-Grade & Medical-Grade PEEK

 

Both industrial-grade and most medical-grade PEEK machine similarly, save for PEEK reinforced with carbon fiber. Silicon carbide cutting tools work well for natural PEEK, while diamond tools work well for PEEK reinforced with carbon-fiber.

 

For medical-grade PEEK applications, the best way to avoid jeopardizing the biocompatibility of the material is to machine dry. However, PEEK doesn’t dissipate heat the way that metals do, so often a coolant is necessary. In that case, air is the coolant option least likely to affect medical-grade PEEK’s biocompatibility. Any chips that are a result of machining medical-grade PEEK can be reused for industrial applications.

 

Preventing Contamination

 

Contamination is a serious concern when machining polymer components for technically demanding industries such as aerospace and medical. To ensure the highest level of sanitation down to the sub-molecular level, AIP Precision Machining designs, heat-treats, and machines only plastics, with any sub-manufactured metalwork processed outside our facility.

 

PEEK Machining Guide: Guidelines

(Courtesy of Invibio)

 

Natural PEEK

Carbon-Fiber-Reinforced PEEK

blank
Sawing blank Preheat material to 120 C degrees
Clearance angle—degrees 15 to 30 15 to 30
Rake angle—degrees 0 to 5 10 to 15
Cutting speed—m/min 500 to 800 200 to 300
Pitch—mm 3 to 5 3 to 5
Drilling blank Preheat material to 120 C degrees
Clearance angle—degrees 5 to 10 6
Rake angle—degrees 10 to 30 5 to 10
Cutting speed—m/min 50 to 200 80 to 100
Feed rate—mm/rev 0.1 to 0.3 0.1 to 0.3
Milling blank No material preheat is necessary
Clearance angle—degrees 5 to 10 15 to 30
Rake angle—degrees 10 to 30 10 to 15
Cutting Speed—m/min 50 to 200 200 to 300
Turning blank No material preheat is necessary
Clearance angle—degrees 6 to 8 6 to 8
Rake angle—degrees 0 to 5 2 to 8
Cutting speed—m/min 250 to 500 150 to 200
Feed rate—mm/rev 0.1 to 0.5 0.1 to 0.5

 

PEEK Machining Guide: PEEK Variants

 

Peek-Variants-Guide

Click to Enlarge

Follow AIP Precision Machining on Linkedin

linkedin logo

Thermoplastics in Medical ApplicationsWhen it comes to choosing a thermoplastic material for your medical applications, product durability, agency approval, biocompatibility and cleanliness aren’t just desirable—they’re essential. Beyond even that, though, a host of other factors must be considered when determining which high-performance plastic or composite material to use for an implant, orthopedic surgical guides, body fluid contact components, spinal devices, or surgical instruments. Medical product applications are becoming more and more advanced due to critical performance and alignment requirements as well as the need for radiolucency to support minimally invasive procedures. Therefore, the choice of plastic material specified for a given application as well as a manufacturer with battle-hardened experience is the critical first step in your decision process.

 

AIP has well over three decades of expertise with thermoplastic materials, and understands how plastics react when machined. We are one of a very select few companies able to hold incredibly tight tolerances in plastic parts. AIP has been successfully audited by some of the most stringent OEMs in the orthopedic and medical device industries, and are ISO 13485:2016, ISO 9001:2015 and FDA registered.

 

Here are just a few initial, yet critical considerations that take place when we determine the thermoplastic to best suit your particular medical or life science application.

 

Biocompatibility

 

If your components are going to come into contact with body tissue or fluids, then those components must be biocompatible per ISO 10993; if the manufacturer you are working with is not familiar with this standard and cannot provide you with this certification for the material, then move on to a manufacturer with medical industry knowledge. This is especially true if the polymers will undergo long-term contact with body tissues and fluid, such as when used as an implant. Polymers can undergo degradation due to biochemical and mechanical factors in the body, which results in ionic attack and formation of hydroxyl ions and dissolved oxygen. In turn, this can lead to tissue irritation, inflammation, and other reactions with body-like corrosion, wear and potential death. Due to this, very few polymers are available as medical grade for medical application, with an even smaller amount considered a candidate for implants.

 

AIP Precision Machining includes machined PEEK implants among its many capabilities for custom medical applications precisely due to PEEK’s biocompatibility. PEEK is also inert to body fluids, making it exceptional for bone surgery as well as areas of traumatology and orthopaedics. Another valuable trait of PEEK is that this material has a very similar modulus to that of human bone. The similar modulus to bone reduces the potential for stress shielding. Stress shielding is common with metallic implants whereby the metal implant and bone do not become one nor work in unison to form a single construct. By using Invibio’s PEEK Optima or Solvay’s Zeniva PEEK as an implant material, the bone and PEEK will grow into a single construct mimicking the bone’s natural tendency to repair the fracture or fusion.

 

Sterilization Compatibility

 

Plastics react differently to various sterilization methods, and if a product is not a single-use device and involves body tissue and fluid contact, then it may regularly undergo sterilization. The usual sterilization methods are radiation (gamma/e-beam), chemical (ETO), or autoclave (steam). ETO is rarely a concern, but radiation and autoclaving both require resistance from plastics. Several radiation resistant thermoplastics are:

 

 

When it comes to autoclaving, the best polymers for resistance are PPSU and PEEK, with both capable of handling exposure to thousands of cycles.

 

AIP takes the matter of sterilization seriously and ensures the highest level of sanitation down to the sub-molecular level for its products. By designing, stress relieving and machining only plastics, AIP significantly reduces the threat of metallic cross-contamination and therefore allows for the highest hygienic products possible.

 

Chemical Resistance

 

A polymer can be exposed to plenty of disinfection chemicals in a hospital. That exposure can deteriorate plastics, and negatively affect part performance. Polymer chains can be affected by isopropyl alcohol, bleaches, and peroxides. Semi-crystalline polymers like PP, PE, PTFE and PEEK can be expected to have better chemical resistance than amorphous polymers like ABS and PC. However, it’s important to check the performance to be certain of resistances, as exceptions can take place.

 

With decades of experience working with thermoplastics, AIP guarantees extreme chemical resistance in its material selection for your medical applications.

 

Electrical & Thermal Properties

 

Dielectric strength and thermal resistance are necessary for medical devices enclosed in areas that require high heat resistance. Thermoplastics such as PC (Polycarbonate), PC blends, PPS (polyphenylene sulfide), PEI and PS (polystyrene) blends have electrical properties that perform well, some even at elevated temperatures.

 

AIP’s material library includes thermoplastics that exhibit extreme thermal performance, and we are familiar with machining them in applications for medical life & sciences.

 

Mechanical Properties

 

Properties such as tensile and compressive strength, wear resistance, impact strength, and bending stiffness also must be considered when choosing your thermoplastic. Engineered thermoplastics such as PC, PEEK, PPSU, POM, PEI and reinforced grades of these same materials (glass, aramid and carbon fillers) perform very well in this respect, making them ideal for a variety of climate conditions, such as during transportation.

 

AIP provides thermoplastics that show extreme wear resistance, x-ray visibility or invisibility and high structural performance.

 

These are just a few of the many considerations that take place when choosing the right plastic for your medical applications. AIP offers you our full material consultancy from concept to completion, so that together, we find the right thermoplastic for your projects.

 

 

Explore Materials Inventory

or request a quote here.




Follow AIP Precision Machining on Linkedin

linkedin logo

Thermosets vs Thermoplastics

Your Brief Guide to Polymer Materials

 

When it comes to polymers, you have two basic types: thermoplastics and thermosets. When machining plastic, it’s crucial to know which one you’re working with due to distinct differences between how these two main polymer categories react to chemicals and temperature.

 

Thermoplastics soften when heated and become more fluid as additional heat is applied. The curing process is completely reversible as no chemical bonding takes place. This characteristic allows thermoplastics to be remolded and recycled without negatively affecting the material’s physical properties. 

 

Thermoplastics possess the following properties:

  • • Good Resistance to Creep
  • • Soluble in Certain Solvents
  • • Swell in Presence of Certain Solvents
  • • Allows for Plastic Deformation when Heated

 

Thermosets contain polymers that cross-link together during the curing process to form an irreversible chemical bond. The cross-linking process eliminates the risk of the product re-melting when heat is applied, making thermosets ideal for high-heat applications such as electronics and appliances.

 

Thermosets possess the following properties:

  • • High Resistance to Creep
  • • Cannot Melt
  • • Insoluble
  • • Rarely Swell in Presence of Solvents

 

Phenolic, Bakelite, Vinyl Ester and Epoxy materials would be considered examples of a thermoset, while ULTEM, PEEK, TORLON and Polycarbonate materials are examples of thermoplastics.

 

The thermoplastic category of polymers is further categorized into Amorphous and Crystalline polymers per the figure below:

 

 

Most amorphous polymers are thermoform capable, translucent and easily bonded with adhesives or solvents. One example of this would be TORLON.

 

Semi-crystalline polymers are difficult to bond or thermoform, but possess better chemical resistances, electrical properties and a low coefficient of fiction. An example of a semi-crystalline polymer would be PEEK.

 

Want to learn more about AIP’s polymer and composite materials?

or request a quote here.

Follow AIP Precision Machining on Linkedin

linkedin logo

Plastic CNC Machining

A Brief History of CNC Machining & Plastic Machining

 

An important part of working with any company is understanding what they do; at AIP Precision Machining, plastic CNC machining is what we’ve done best for the past 35 years.

 

CNC (Computer Numerical Control) machining is a process in the manufacturing sector that involves the use of computers to control machine tools. In the case of plastic machining, this involves the precise removal of layers from a plastic sheet, rod, tube or near net molded blank. This subtractive manufacturing differs from additive manufacturing techniques, such as 3D printing.

 

The History of CNC Machining

The early history of CNC machining is almost as complex as a modern CNC system. The earliest version of computer numerical control (CNC) technology was developed shortly after World War II as a reliable, repeatable way to manufacture more accurate and complex parts for the aircraft industry. Numerical control—the precursor to CNC—was developed by John Parsons as a method of producing integrally stiffened aircraft skins.

 

Parsons, while working at his father’s Traverse City, Michigan-based Parsons Corp., had previously collaborated on the development of a system for producing helicopter rotor blade templates. Using an IBM 602A multiplier to calculate airfoil coordinates, and inputting this data to a Swiss jig borer, it was possible to produce templates from data on punched cards.

 

Parsons’ work lead to numerous Air Force research projects at the Massachusetts Institute of Technology (MIT) starting in 1949. Following extensive research and development, an experimental milling machine was constructed at MIT’s Servomechanisms Laboratory.

 

CNC machining can be used for a wide variety of materials, but at AIP Precision Machining, we solely machine polymers and composites. This significantly reduces the threat of metallic cross contamination in our products, allowing us to provide the most hygienic devices and components for our clients.

 

The Complexity of Polymer Machining

There are benefits to machining polymer components over metallic materials, but it’s a mistake to assume both machine the same way. Due to the many different kinds of polymers and composites, it’s important to have strong technical expertise of polymer materials when machining plastic components; some plastics are brittle, for example, while others cut similarly to metal.

 

The challenge of plastics is their wide range of mechanical and thermal properties which result in varying behavior when machined. Therefore, it’s important to understand the polymer structure and properties of a material if you’re machining it. Having expert material knowledge is essential for this reason, which is why AIP has it as one of our core offerings.

 

One example of this would be knowing if you’re machining a thermoset or a thermoplastic.

 

Here are a few polymer machining guides that discuss the specifics of plastic machining various materials:

 

Want to learn more about AIP Precision Machining’s capabilities?

Explore our extensive plastic machining capabilities here, or if you like, you can contact us to get a quote here.

Follow AIP Precision Machining on Linkedin

linkedin logo

With over two decades of experience machining precision plastic and composite parts for the Aerospace & Defense industry, AIP Precision Machining knows that weight and strength are critical for your flight-ready hardware. That’s why we’ve carefully selected, machined and tested all our thermoplastic materials to various aerospace and defense industry standards. Our lightweight polymers and composites have stable chemical and corrosion resistance, as well as improved strength to weight ratios when compared to exotic alloys and non-ferrous metals. AIP’s polymer and composite materials maintain their properties even at high temperatures.

 

Here are some specific examples of thermoplastic materials commonly used in the Aerospace & Defense industry.

 

ULTEM-PEI

ULTEM – PEI

ULTEM has one of the highest dielectric strengths of any thermoplastic material. This enables ULTEM to work very efficiently as an electrical insulator. Being resistant to both hot water and steam, ULTEM can withstand repeated cycles in a steam autoclave and operate in high service temperature environments (340F or 170C). ULTEM also has one of the lowest rates of thermal conductivity among thermoplastics, allowing machined ULTEM parts to act as thermal insulators. ULTEM is FDA and NSF approved for both food and medical contact, making it an excellent choice for aircraft galley equipment such as ovens, microwaves and hot or cold beverage dispensing systems. Finally, its UL94 V-O flame rating with very low smoke output makes this material ideal for aircraft interior components.

 

 

CELAZOLE - PBI

CELAZOLE – PBI

CELAZOLE provides the highest mechanical properties of any thermoplastic above 400F (204C) and offers a continuous use operating temperature of 750F (399C). This impressive lightweight material has outstanding high-temperature mechanical properties for use in aircraft engines and other HOT section areas. These properties include good fatigue resistance, compressive strength, wear resistance and electrical insulation. After being submerged in hydraulic fluid at 200°F for thirty days, CELAZOLE retains 100% tensile strength.

 

 

RYTON – PPS

RYTON’s inherent fire retardancy, thermal stability, and corrosion resistance make it perfectly suited for aerospace applications, while its dimensional stability means even the most intricate parts can be manufactured from RYTON with very tight tolerances. RYTON is typically used for injection molded parts; however, there is limited availability of extruded rod and plate for machining.

 

 

 

DURATRON PI

VESPEL or DURATRON – PI

Like RYTON, VESPEL is dimensionally stable and has fantastic temperature resistance. It can operate uninterrupted from cryogenic temperatures to 550°F, with intermittent to 900°F. Thanks to its high wear and friction resistance, VESPEL performs with excellence and longevity in severe aerospace environments. VESPEL is a trademark material of DuPont and can be provided in direct formed blanks or finished parts directly from DuPont. AIP has provided precision machined components from DuPont manufactured rod and plate stock. You can typically find VESPEL used in high temperature and high-speed bearing and wear applications, such as stator bushings.

 

 

TORLON

TORLON or DURATRON – PAI

DURATRON PAI’s extremely low coefficient of linear thermal expansion and high creep resistance deliver excellent dimensional stability over its entire service range. PAI is an amorphous material with a Tg (glass transition temperature) of 537°F (280°C). DURATRON PAI stock shapes are post-cured using procedures developed jointly by BP Amoco under the TORLON trade name and Quadrant under the DURATRON trade name. PAI components fabricated from extruded shapes that require optimization of chemical resistance and/or wear performance often receive a post-curing cycle. You can find TORLON parts in structural, wear and electrical aerospace applications.

 

 

TECHTRON

TECHTRON – PPS

TECHTRON has essentially zero moisture absorption, which allows products manufactured from this material to maintain extreme dimensional and density stability. PPS is highly chemical resistant and can operate while submerged in harsh chemicals. Additionally, TECHTRON is inherently flame retardant and can be easily machined to close tolerances. PPS has a broader resistance to chemicals than most high-performing plastics, as well. TECHTRON can work well as an alternative to PEEK at lower temperatures for this reason.

 

 

 

RADEL

RADEL – PPSU

With high heat and high impact performance, RADEL delivers better impact resistance and chemical resistance than other sulfone-based polymers, such as PSU and PEI. Its toughness and long-term hydrolytic stability mean it performs well even under autoclave pressure. Importantly, RADEL R5500 meets the stringent aircraft flammability requirements of 14CFR Part 25. These allow the aircraft design engineer to provide lightweight, safe and aesthetically pleasing precision components for various aircraft interior layouts. RADEL can also be polished to a mirror finish and is FDA and NSF approved for food and beverage contact.

 

 

 

KEL-F

KEL – F

Kel-F is a winning combination of physical and mechanical properties, non-flammability, chemical resistance, near-zero moisture absorption and of course outstanding electrical properties. This stands out from other thermoplastic fluoropolymers, as only Kel-F has these characteristics in a useful temperature range of -400°F to +400°F. In addition, it has very low outgassing and offers extreme transmissivity for radar and microwave applications. Many aircraft and ground-based random applications use Kel-F.

 

 

 

PEEK

PEEK

PEEK can be used continuously in temperatures of 480°F (250°C) and in hot water or steam without permanent loss of physical properties. For hostile environments, PEEK is a high strength alternative to fluoropolymers. PEEK carries a V-O flammability rating and exhibits very low smoke and toxic gas emission when exposed to flame. These aren’t the only reasons that PEEK is an increasingly popular choice for metal replacement in aerospace, however. Many manufacturers prefer PEEK for its lightweight nature, mechanical strength, creep and fatigue resistance, as well as its ease of processing. These and other exceptional physical and thermal characteristics make PEEK a versatile thermoplastic polymer for many aerospace applications. AIP has provided flight control, fuel system, interior, engine and aerodynamic-related PEEK components for various aircraft OEM and MRO providers worldwide.

 

 

KYNAR - PVDF

KYNAR – PVDF

Another example of thermoplastic materials used in aerospace and defense is KYNAR, or PVDF. This polymer has impressive chemical resistance at ambient and elevated temperatures, as well as good thermomechanical and tensile strength. KYNAR is extremely durable due to its weather-ability and toughness even in the most severe environments. In addition to being flame-resistant, KYNAR is easy to machine, too. You can typically find KYNAR components in pipe fitting and various fuel or other fluid related precision manifolds or connectors.

 

 

 

 

Explore Materials Inventory

or request a quote HERE.

 

Follow AIP Precision Machining on Linkedin

linkedin logo

Aerospace Manufacturing Company

When looking to design a custom critical component for the aerospace industry, finding the right plastics manufacturer is just as important as deciding what resin works best for your project’s needs. The use of high performing plastics and thermoplastics such as ULTEM, TORLON, PEEK, and RADEL has quadrupled in aerospace design over the last 45 years thanks to their unique dynamic properties, and with them comes the need for precise machining and manufacturing.

 

Here are 5 considerations you should take into account before choosing your aerospace plastic parts manufacturing company:

 

Capabilities & Competency

 

Before hiring a plastics manufacturing company, first ensure that they have the plastic designing and production capabilities necessary to handle your aerospace project’s needs. The three main plastic production processes are 3D Printing, Injection Molding and Plastics Machining. Discovering which technology is most appropriate for your project is dependent on your project’s requirements… and the plastics manufacturer you decide on should be able to tell you the pros and cons of each technology.

 

The manufacturer you choose should also have the ability to navigate from your product’s initial vision through its production, addressing quality and customer care every step of the way. They should be able to competently handle the raw plastic materials of your choice as well, so that you receive the highest quality product in regards to cost, time, precision, efficiency, materials and more. Your project, regardless of specificity, can be machined into a highly precise and extremely resilient product.

 

Here at AIP Precision Machining, our decades of experience working with ULTEM, TORLON, PEEK, and RADEL high performing plastics ensures smooth navigation from your project’s start to finish.

 

 

Industry Standards

 

Product manufacturing companies must follow industry standards like International Organization for Standardization (ISO), Food and Drug Administration (FDA), International Traffic in Arms Regulation (ITAR) and more in order to ensure that their products hold up to specific requirements. Be wary of companies that have a default “Standard” methods—these are made-up specifications that do not follow recognized, insured specifications.

 

Take a careful look at a company’s ISO certifications. For instance, ISO 9001 is focused on meeting customer expectations, continually delivering customer satisfaction and it requires an organization to demonstrate constant improvement… If an organization doesn’t have this regulated license, you may want to ask them why.

 

Also, consider other notable ISO certifications like the AS9100 standard which is similar to the ISO 9001 standard, but with additional requirements for aerospace manufacturing that are tailored to a particular industry’s quality system expectations and regulatory requirements.

 

Here at AIP Precision Machining, not only are we registered to these standards, but we are registered to the most recent version of the ISO standards.

 

Additional Services

 

Plenty of plastic manufacturing firms offer consulting services as well as developmental processes. Going with a plastic product manufacturing company that has manufacturing conceptualization engineers can help in the long run if your project requires any design modifications. Engineering support also ensures efficiency through every step of your project’s progression.

 

Some plastics manufacturers also offer quality assurance measures. Not every company guarantees that their end products will hold up to your specifications but the firms that do will additionally offer services focused on comprehensive product design, development, patent registration guidance and prototype creation.

 

Here at AIP Precision Machining, we’re proud to offer a complete and effective quality assurance process that focuses on product quality, fast delivery, and cost-effective options.

 

Domestic vs. Overseas

 

If you decide to use an overseas factory, asking the right questions is critical to determine if they have the capabilities, credentials, and experience to become your trusted partner. It can often be difficult to find a reliable company that delivers high quality work. Some ways to find the best plastic manufacturer overseas is by asking for referrals, actually flying to their location, and asking a lot of questions and paying close attention to their responses. Many overseas factories will usually have a U.S.-based agent to represent them. If you find a company that seems like a good fit, ask to contact their domestic agent.

 

Domestic manufacturers, meanwhile, greatly reduce delivery times and shipping expenses; one who is in your same time zone allows for easy communication and improved customer services. There’s also the advantage that U.S. manufacturers have higher quality and labor standards, greater payment security, and high intellectual property right protection.

 

AIP Precision Machining is headquartered in Daytona Beach, Florida with an additional sales office in southern California. We provide an “open door” policy to our facility for potential and existing clients.

 

Experience & Expertise

 

Checking the track record of a company is important to get a clear outline of their performance, customer satisfaction, and overall product deliverability. Ask about their work history to see their range of experience and their level of expertise with aerospace projects similar to yours.

 

For instance, we at AIP Precision Machining have worked with leading aerospace and defense engineers and contractors such as Lockheed Martin, BAE Systems, and GE Aviation. With our 35+ years of polymer machining experience, we’re ready to take on the most stringent challenge to meet your needs.

 

If you’re interested in learning more about how to choose a plastic product manufacturer for your critical aerospace components, feel free to reach out to us online or call us at +1 386.274.5335 for a free consultation with one of our highly-skilled engineers.

Follow AIP Precision Machining on Linkedin

linkedin logo

Earlier this month, we were pleased to attend the QAADS Symposium and present our case study, “The Right Stuff / Aircraft Galley Applications”.

 

In this partner application study, we detailed:

 

  1. The appropriate steps in finding the right material for interior private jets.
  2. Determining whether the said material will meet both FDA and FAR 25.853 requirements after manufacturing.
  3. How unique technical capabilities can contribute to a better product without sacrificing fast delivery.
  4. How AIP was able to machine a part other shops are not capable of manufacturing.

 

By providing a comprehensive understanding of what technologies are available—compared to that of the competition—we were excited to present the latest in plastic precision-machined components, illustrating with empirical data how the AIP Precision Machining team solved the aircraft’s application requirements.

 

The QAADS brings engineers in the aviation, aerospace and defense fields together with leading advanced plastics manufacturers to address concerns and challenges faced by the industry with actionable strategies.

 

Looking towards next year, we’re very excited for the 2018 QAADS meeting.

 

If you’d like to learn more about the technical and flexible manufacturing and materials solutions AIP can provide, please reach out to us at 386-274-5335 or email AIP.Sales@AIPprecision.com.

Follow AIP Precision Machining on Linkedin

linkedin logo

To a certain degree, 3D printing, injection molding, and plastic machining technology overlap in their capabilities and offerings. But which fabrication process is most appropriate for your project? What are their key differentiators? The following article assesses the utility of each technology with regard to precision, efficiency, materials and more.

 

Capabilities

 

An example of 3d printing example of Yoda

3D printing is an additive manufacturing process that prints layers of plastic substance in three dimensions onto a single point. The popularity of 3D has grown significantly over the past few years, and it can easily be used for rapid prototyping, DIY production and manufacturing by small-scale engineers or designers. Many of the advances in 3D printing have been focused on bringing down prices, rather than technological advancement so that it can be more accessible to “mom-and-pop” users who are otherwise not eligible for the more expensive and advanced manufacturing processes.

 

An example of injection molding

 

Another additive technology, injection molding is a manufacturing process in which parts are produced by injecting materials in liquid form into a mold. Commonly performed with thermoplastic polymers, it can be used with a variety of other metal and glass materials. Small pellets of material are heated into a molten liquid which is then injected into a mold at high pressures and rapidly cooled—causing it to harden—and then ejected from the mold, exposing the part to air. Two of its key benefits include a fully automated process—permitting very high rates of production—and also that its molds allow for highly detailed and intricate parts.

 

An example of plastic molding

 

Finally, plastic machining, or CNC (Computer Numerical Control) plastic machining or CNC milling, involves the precise removal of layers from a material. Typically beginning with a block of the desired plastic material, plastic machining involves removing material layers at a time and allows for many different materials to be used. Introduced by MIT during the 1950s, this technique utilizing drilling tools to carve plastics—and because it’s computer-controlled, extremely precise and tolerant products are achieved.

 

 

 

Comparing the Options

 

 

3D Printing Injection Molding Plastic Machining
Cost Very low cost when you need 1-10 rapid design iterations on a prototype part. Because creating (or updating) a mold can end up being much more expensive than the actual order itself, this is only cost-effective with very large-scale projects. Significantly cost-effective when you need a few parts up to a few thousand.
Design Designs can be highly personalized and unique—this technology is often used by artists and creative professionals. Allows for deep features, square holes and living hinges to be produced easily. High design flexibility at lower costs are allowed.
Material Very limited in comparison to other plastic fabrication and unable to achieve the same smooth surfaces as the other technologies. Injection molding has a much wider range of materials available for use compared to 3D printing but is more limited than CNC machining. Broadest range of materials are allowed—CNC plastic machining also achieves the smoothest finish with the fewest imperfections.
Production Fast and extremely convenient—small products can be machined in seconds. Requires time to make the mold but once the mold is finalized, production moves quickly. One of the fastest forms of fabrication and can easily scale between small and large outputs.
Tolerance 3D printed prototypes are not typically finished parts and are much more likely to delaminate. Best for home and personal consumer-grade products. Parts are molded at tighter tolerances than 3D printed parts but are not as tolerant as plastic machined parts. Highest tolerances available—parts are able to reach +/- 0.002 mm and are best for demanding industries like aerospace and defense, medical and life sciences and power generation.

 

Why Plastics Machining Ranks Best

 

From the above chart, you can see the differentiators of each fabrication process. However, we’ve found that CNC plastic machining is by far the most precise and beneficial process for custom applications.

 

Cost-wise, plastics machining is the most effective for any project that requires unique, strong designs. 3D printing is the cheapest form of fabrication but you get what you pay for with that medium… and the quality typically just isn’t there. Injection molding, meanwhile, offers much stronger products than those that are 3D printed, but modifications to a mold are extremely expensive and injection molded products are not as tolerant as plastic machined parts.

 

Looking at design abilities, each medium offers a wide range of capabilities but again, if it’s quality that your project needs, CNC machining is the way to go—3D printed materials are really only suited to personal or home use and injection molded products cannot hold up to the rigors of the aerospace and defense, medical or power and energy industries (among others). Further, machining designs are crafted on the same computer applications that 3D printing uses so there’s no cost associated with changing the design of the product (unlike injection molding, where a new mold would then need to be created).

 

It is important to note that CNC plastic machining is a specialized craft… not just anyone interested in 3D modeling can create the design for a plastic machined product. Here at AIP Precision Machining, we have over 35 years of technical design expertise and we work diligently with our clients to craft products that exactly meet their project requirements.

 

If you’re looking to decide on a fabrication process via the material selection available to you, plastics machining offers the widest range of diverse thermoplastics for your project. 3D printing has not advanced its material range in many years and because injection molding requires liquidating its materials, you won’t be able to use the stronger, heat-resistant plastics that might be best for your needs. CNC machining is the only process that allows you to choose from the full assortment of material selections.

 

3D printing and CNC machining tie for the fastest production times, as both take minutes to complete. Injection molding, however, requires more time to make the mold (which can take weeks to finalize).

 

Finally, if your project requires the highest levels of tolerance, precision machining produces the most precise and extremely tolerant products. It’s the only fabrication process suited for critical pieces.

 

Want More Information?

 

Of 3D printing, injection molding and CNC plastic machining, one process is not necessarily better than the other—it’s dependent on your project requirements. However, plastics machining is by far the most specialized and precise option for high-quality, critical parts needed in industries like aerospace and defense, medical and life sciences and power and energy.

 

Here at AIP Precision Machining, we commonly craft pieces that are able to survive the rigors of space, the inside of a human body or the corrosive chemicals used on an oil rig. We offer state-of-the-art technology and extensive expertise to provide you with the highest quality products. Contact us to learn more about our process and what CNC plastics machining could do for you.

Follow AIP Precision Machining on Linkedin

linkedin logo

Kids are hard at work in their plastics manufacturing summer camp.

The word “summer camp” denotes images of canoeing on a lake, staying up late to tell ghost stories or hiking through the woods. But today, that term is expanding to include hardwiring electronics, designing products through CAD and making plastic products kids can take home… Huh?

 

The plastics manufacturing industry has begun partnering with career centers, schools and summer camps in an attempt to bring attention to manufacturing careers. Camps designed for fifth through twelfth graders are popping up that allow kids to design, build and manufacture plastic projects, giving them an idea of what a job in the plastics industry might be like.

 

Plastics, like other production sectors, is experiencing a shortage of skilled workers: with only seasoned veterans getting ready to retire and newbies fresh out of school, the generation in-between was steered away from manufacturing jobs by teachers and parents who were concerned the industry was lapsing next to manufacturing giants in China and India. However, the U.S. plastics industry has only continued to grow over the last 25 years… meaning that more and more positions are opening up.

 

“We want to make sure [students] have an opportunity and some exposure to something like manufacturing,” said Alice Cable, the executive director of Alliance for Working Together—an organization aimed at promoting careers in manufacturing and production. “We also want it to be something that’s fun for them.”

 

Several camps that are taking off include the Summer Manufacturing Institute, which helps students discover a passion for making things, Penn College’s summer Engineering Camp, which introduces kids to plastics and polymer engineering and Nuts, Bolts & Thingamajigs, which aims to inspire the next generation of manufacturers.

 

Certainly, it’s been hard work building excitement for the machining trade, but the results are beginning to show; Anne Cowell, an outreach manufacturing educator, notes that these programs are really hooking kids into how cool plastics manufacturing can be: “The students’ energy is contagious as we work through hands-on investigations and they are so engaged in each experiment.”

 

We’re excited to see what these camps can do for our industry. An influx of youth with a passion for making things is definitely needed and we hope to see some real engagement in plastics manufacturing once these students graduate from high school and college.

 

Here at AIP Precision Machining, we’re working hard to attract young students to become interested in plastics. If you’d like to learn more about our presence in the community or our manufacturing capabilities, feel free to contact us.

Follow AIP Precision Machining on Linkedin

linkedin logo