Keeping aircraft in “PEEK” condition for flight

 

High-temperature lightweight materials are critical to aircraft applications. Aircraft engines can reach temperatures up to 3812 Fahrenheit (2100 Celsius); vehicles at higher altitudes undergo extreme temperature changes compared to ground operations. Aircraft components and equipment must be able to withstand these temperatures in addition to high pressure, vibrations, impact, and corrosion to maintain reliable, safe operation. Among the advanced materials on the market, polyetheretherketone (PEEK) is a top material choice for aerospace and defense critical component applications.

 

AIP has over 39 years of experience machining complex tight tolerance components from thermoplastics like Polyetheretherketone (PEEK).  In this insightful technical brief, we discuss the advantages of PEEK for thermal applications in aviation component manufacturing.

 

 

PEEK for Machined Aircraft Components

 

Industrial-grade PEEK is a thermoplastic known for its flame retardance, abrasion resistance, and high impact strength. It is known for maintaining its mechanical properties at elevated temperatures, which makes it an ideal candidate for aircraft components.

 

Key Properties

  • Abrasion Resistance
  • Chemical Resistance
  • High Ductility
  • High Elongation
  • Hydrolysis Resistance
  • Low Outgassing
  • Thermal Stability

 

PEEK’s diversity of aerospace applications includes:

  • Flight control components
  • Fuel system components
  • Aircraft interiors
  • Engine and aerodynamic-related components

 

3 Benefits of PEEK’s thermal capabilities for aerospace materials

 

There are numerous reasons to choose PEEK for aircraft components. Aircraft often undergo extreme temperature fluctuations due to extreme altitude changes. Therefore, it’s critical for aircraft components to maintain their functionality and integrity in various operational environments.

 

While metals play a key role in aviation materials, especially structurally, they can’t compete with thermoplastics in several categories, including thermal and electrical isolation and lightweight/high-heat performance. There are three reasons PEEK is a better choice than metals for thermal applications:

 

Insulating and Radar Absorbent:  Military vessels and aircraft rely on stealth to carry out critical missions and projects. Thermoplastics like PEEK are naturally radar-absorbent as well as thermally and electrically insulating.  These properties allow for flame retardance, radar transmissivity, weight reduction, and insulating properties all combined in one!

 

Corrosion-Resistant:  Exposure to harsh chemicals is inevitable whether on a plane, drone, or space vehicle. PEEK handles high temperatures of 480 Fahrenheit (249 Celsius) continuously and maintains functionality in hostile environments during exposure to water, chemicals, aircraft fuels, and steam. This quality alone can increase the lifespan of an aircraft, save operators on costly maintenance services, and reduce MRO downtime for more operational time per aircraft per year.   

 

Flame and Smoke Resistances:  PEEK carries a V-O flammability rating and exhibits very low smoke and toxic gas emissions when exposed to flame.  Therefore, PEEK is an ideal candidate for interior aircraft components. Today’s commercial jet engines can reach temperatures as high as 3,092 degrees Fahrenheit (1,700 Celcius). Under such a heat index, aircraft materials have to maintain functionality, and PEEK is an excellent material for numerous applications within PEEK’s thermal capability range.

 

PEEK is a material choice over metal not only for its thermal properties, but as a lightweight material, it shaves off excess weight that would have otherwise increased the fuel usage in an aircraft. It’s estimated that operators can make weight savings up to 60 percent When converting metallic components to high-performance polymers such as PEEK. This translates to lower annual fuel costs, reduced emissions, lower carbon footprint, and extended flight ranges.

 

Choosing a machining facility for your aerospace manufacturing

 

PEEK and other thermoplastics continue to gain attention as a material choice for high-performance aircraft and aerospace manufacturing applications. It’s important to not only focus on the thermal properties of the material but the overall capabilities of a material and how it could fit into your design.

 

When researching machining shops for your performance plastic aerospace application, look for a manufacturer that machines only plastics. Some manufacturers machine both metals and plastics on the same machine, and that can contaminate a precision polymer machined part with micro metallic fragments.

 

Also, ensure the facility is audited and registered to the correct regulatory standards, including CMMC, ITAR, FDA, and AS9100D. Most OEMs work under stringent regulations, especially those affiliated with government operations. It’s critical to have a shop that communicates with you every step of the machining process and follows these strict regulations.

 

If you are looking for thermoplastics like PEEK for an aerospace project, AIP’s engineers offer design consultation, precision plastics machining expertise, and on-time project delivery. For over 39 years, AIP has worked with performance thermoplastics from PEEK, VESPEL, TORLON, RADEL, TEFLON, and ULTEM to provide highly precise and extremely resilient machined parts. One final key component is to assure your polymer machining partner is capable and well experienced in thermal stress reliving of polymer materials. There is more to machining mission-critical polymer aerospace components than just the machining! Contact AIP for a consultation on your mission-critical project.

 

Supportive Information

 

Aerospace Materials
Peek Variants Guide

 

Thermoplastics make a big difference in weight savings for aerospace materials. See how:

 

Read Our Blog

 

Follow AIP Precision Machining on Linkedin

linkedin logo

An Informational Brief on Polymer Machining

 

Polycarbonate, one of the oldest known polymers, was first discovered in 1898 by Alfred Einhorn at the University of Munich. It was not until 1953 that Bayer patented the first linear polycarbonate and branded it as “Makrolon”. Ever since then, this material has become one of the most commonly used polymers across multiple industries.

 

Known for its durability, stability and clarity, polycarbonate is commonly found in car lighting systems, shatter-proof windows and “glass parts” replacement in aerospace applications like military fighter jet canopies, as well as laboratory lenses, heat-loaded plastic parts, electric circuits and other electrical applications. Not only is PC tough with excellent impact strength, it is easily machined, molded and thermoformed.

 

AIP has over 35 years of experience machining complex components from thermoplastics like polycarbonate. In this insightful technical brief, we will discuss what goes into machining polycarbonate and how it differs from other manufacturing options such as metal machining, injection molding, and 3D printing.

 

Properties of Polycarbonate

 

Keeping information about the properties of a thermoplastic beforehand is always beneficial. This helps in selecting the right thermoplastic for an application. It also assists in evaluating if the end use requirement would be fulfilled or not. Here are some of the key properties of polycarbonate:

 

PC (Polycarbonate) is a transparent amorphous thermoplastic characterized by very high impact strength and a high modulus of elasticity. PC absorbs very little moisture, resists acidic solutions and has a 290°F (145°C) heat deflection temperature at 264 psi.

 

Additionally, PC has good dielectric strength, UV resistance and is an easily machined material. Compared to Acetal, PC has a higher tensile strength at temperatures over 140°F (60°C), as well a low dissipation factor. PC also has a much higher temperature resistance than acrylic and offers greater impact resistance.

 

Grades of Polycarbonate

 

At AIP, we machine various grades and brand name polycarbonates including: LEXAN, HYZOD/MAKROLON, QUADRANT PC 1000, SUSTANAT PC, TECANAT, ZELUX and 20% glass reinforced polycarbonate.

 

Our close ties with the industry’s leading plastics manufacturers give us even further insight and access to technical help in material selection, sizing and manufacturing procedures. Whatever your application, our machinists can help you in material selection, sizing and manufacturing techniques from concept to completion.

 

Machining Polycarbonate

 

Annealing Polycarbonate
Polymers like PC are prone to stress cracking and premature part failure when placed under high heat and tensile load. Therefore, annealing is crucial if you want a quality, precision machined part out of the stock shape. The annealing process at AIP greatly reduces the chances of these stresses occurring from the heat generated during machining PC and other polymers. Our machinists use computer controlled annealing ovens for the highest quality precision machining.

 

Machining Polycarbonate
Polycarbonate rod and plate are easy to machine and have excellent dimensional stability. We recommend non-aromatic, water-soluble coolants because they are most suitable for ideal surface finishes and close tolerances. These include pressurized air and spray mists. Coolants have the additional benefit of extending tool life as well.

 

Some companies machine both metals and plastics, which has detrimental outcomes for machined polymer products. Many past experiences have shown parts going to customer without cracks, only to develop surface cracks and warping over time due to exposure to metal machine shop fluids. Be sure to use a facility like AIP that only machines polymers.

 

Discover more about the advantages of plastics over metals

 

Read Our Blog

 

Preventing Contamination
Contamination is a serious concern when machining polymer components for technically demanding industries such as aerospace and medical sciences. To ensure the highest level of sanitation down to the sub-molecular level, AIP Precision Machining designs, heat-treats, and machines only plastics with any sub-manufactured metalwork processed outside our facility. This allows us to de-risk the process from metallic cross contamination.

 

Polycarbonate Machining Guide: Supportive Information

 

Amorphous Materials
 

Do you have a question about a precision machined part from polycarbonate or another polymer?

 

Get a Consultation

 

 

Follow AIP Precision Machining on Linkedin

linkedin logo

How Aluminum Got Dethroned by Thermoplastics in Aerospace

 

Cup holders. Magazines. Suit cases. Aircraft engines. Here’s a riddle, what do these items all have in common? If you’re an aircraft operator, the answer is obvious: they all add weight, making them a drain on your fuel costs.

 

If weight is one of the main operating costs of an aircraft, then it’s no surprise that airlines want to lose a few pounds. Over the last 36 years, AIP has witnessed firsthand the incredible weight savings that can be gained from using lightweight polymers and composites for aerospace applications.

 

How Airlines “Slim Down” Operating Costs

 

How much can an ounce cost you? Plenty. In the case of United Airlines, removing a single ounce from its in-flight magazine has translated to saving $290,000 a year. Yes, a single ounce can hit an airline with up to six digits in costs.

 

If thinner paper can have such an impact on your bottom line, then you can imagine the significant cost savings that can come from manufacturing lighter aerospace components. What’s the most lightweight solution for aircraft operators today? We have one word for you: plastics.

 

What Makes Plastics the Secret to Aircraft Fuel-Efficiency

 

Aluminum was popular during the “Golden Age of Aviation” because of its strength and durability as well as its lightness when compared to other metals like steel. As a result, many aircraft components have traditionally been metal, from aircraft interiors, to landing gear, aircraft engines and structural components.

 

Now consider the fact that polymer and composite materials can be up to ten times lighter than metal. It’s no wonder that as more thermoplastic materials come on the market and new manufacturing opportunities arise, metal replacement has been seen as one of the best opportunities to reduce airline weight.

 

How big is the impact of switching from aluminum to plastic parts like PEEK and ULTEM in aerospace applications? Operators can earn weight savings of up to 60%. This translates to lower lifetime fuel costs, reduced emissions and extended flight range for operators.

 

“Weighing” the Option of Plastics in Aerospace

 

Weight alone is a massive reason to consider thermoplastics for aerospace, but weight isn’t the only factor at play in material selection.

 

After all, wood is lighter than metal, but there’s a reason we don’t build spruce airframes like the first plane from the Wright brothers: it wouldn’t be safe today to fly a wooden plane! Aerospace components need to be able to survive in corrosive, harsh environments as well as provide resistance to high temperatures.

 

In other words, it’s crucial that your mission-critical components aren’t just lightweight, but also high-performing.

 

At AIP, we carefully apply our decades of material expertise to select the right material for your application’s needs. Remember that your aerospace plastics manufacturer should understand the unique demands of your industry and your application, and have experience machining the material you require.

 

Want to learn more about how AIP reduces costs for aircraft operators?

Read how machined polymer components can take a load off aircraft interiors in our aerospace case study.

Download our Case Study

 

Follow AIP Precision Machining on Linkedin

linkedin logo

When design engineers need a custom-machined component for a project, many consider metals first for their strength and durability.  However, this is not the case anymore; metals are moving over as polymers and composites become a more sensible alternative for precision-machined, high-strength durable parts.  This is true across many industries, but especially in the aerospace and defense sectors.  In this article, we will explore the benefits of opting for a plastic material for mission-critical aerospace and defense parts.

 

Overall Benefits

 

Machined polymer and composite components are the most cost-effective solution compared to metal.

 

First, machined plastic parts are lighter and, therefore, provide immense advantages over metals by offering lower lifetime freight costs for equipment that is regularly transported or handled over the product’s lifetime. Furthermore, polymers allow lower power motors for moving parts due to lower frictional properties of polymer wear components compared to metals. The low frictional properties preserve the integrity of the part as well, which translates to less maintenance-related downtime. What does this mean for operators?  Equipment remains online longer doing what it’s supposed to do – produce profit and functionality.  Not only are plastics lighter, but they’re also less expensive than many raw metal materials used for parts. Plastics can be produced in faster cycles than metals, which helps keep manufacturing costs down as well.

 

At AIP, we can machine and deliver parts in as little as 10 business days.

 

Explore AIP’s Machining Capabilities

 

Plastics are more resistant to chemicals than their metal counterparts.

 

Without extensive and costly secondary finishes and coatings, metals are easily attacked by many common chemicals. Corrosion due to moisture or even dissimilar metals in close contact is also a major concern with metal components. Polymer and composite materials such as PEEK, Kynar, Teflon, and Polyethylene are impervious to some of the harshest chemicals. This allows for the manufacture and use of precision fluid handling components in the chemical and processing industries.  These parts would otherwise dissolve if they were manufactured from metal materials. Some polymer materials available for machining can withstand temperatures over 700°F (370°C).

 

Plastic parts do not require post-treatment finishing efforts, unlike metal.

 

Polymer and composites are both thermally and electrically insulating. Metallic components require special secondary processing and coating in order to achieve any sort of insulating properties. These secondary processes add cost to metallic components without offering the level of insulation offered by polymer materials. Plastic and composite components are also naturally corrosion resistant and experience no galvanic effects in a dissimilar metal scenario that require sheathing. Additionally, plastic materials are compounded with color before machining, eliminating the need for post-treatment finishing efforts such as painting.

 

Aerospace and Defense benefits graphic
 

 

Benefits to the Aerospace & Defense Sector

 

Polymers bring many advantages to the aerospace and defense industry, particularly in the form of weight-saving capabilities.  Let’s take a closer look at the benefits of precision machined mission-critical components.

 

  • Lightweight: Polymer and composite materials are up to ten times lighter than typical metals. A reduction in the weight of parts can have a huge impact on an aerospace company’s bottom line. For every pound of weight reduced on a plane, the airline can realize up to $15k per year in fuel cost reduction.

 

  • Corrosion-Resistant: Plastic materials handle far better than metals in chemically harsh environments. This increases the lifespan of the aircraft and avoids costly repairs brought about by corroding metal components an in-turn reducing MRO downtime provides for more operational time per aircraft per year.

 

  • Insulating and Radar Absorbent: Polymers are naturally radar-absorbent as well as thermally and electrically insulating.

 

  • Flame & Smoke Resistances: High-performance thermoplastics meet the stringent flame and smoke resistances required for aerospace applications.

 

Aerospace and Defense benefits graphic
 

Other Benefits for Aerospace and Defense

 

  • High Tensile Strength: Several lightweight thermoplastics can match the strength of metals, making them perfect for airplane equipment metal part replacement.

 

  • Flexibility & Impact Resistance: Polymers are resistant to impact damage, making them less prone to denting or cracking the way that metals do.

 

Plastics have a variety of unique attributes which place them above metals in terms of utility, cost-effectiveness and flexibility for precision-machined mission-critical components.  To learn more, search specific plastic materials and their applications per industry with our useful material search function.

 

Download Our Plastics Over Metals Infographic

Take Our Material Expertise with You.

Download our Infographic

 

Follow AIP Precision Machining on Linkedin

linkedin logo

With over three decades of experience machining precision plastic and composite parts for the Aerospace & Defense industry, AIP Precision Machining knows that weight and strength are critical for your flight-ready hardware. That’s why we’ve carefully selected, machined, and tested all our thermoplastic materials to various aerospace industry standards. Our lightweight polymers and composites have stable chemical and corrosion resistance, as well as improved strength to weight ratios when compared to exotic alloys and non-ferrous metals. AIP’s polymer and composite materials maintain their properties even at high temperatures.

 

Read more on thermoplastic materials commonly used in the Aerospace & Defense industry for every day to mission-critical applications.

 

 

ULTEM – PEI

 

ULTEM-PEIULTEM has one of the highest dielectric strengths of any thermoplastic material, meaning it works very efficiently as an electrical insulator. Being resistant to both hot water and steam, ULTEM can withstand repeated cycles in a steam autoclave and can operate in high service temperature environments (340F or 170C).  ULTEM also has one of the lowest rates of thermal conductivity, allowing parts machined from ULTEM to act as thermal insulators.  ULTEM is FDA and NSF approved for both food and medical contact and therefore is an excellent choice for aircraft galley equipment such as ovens, microwaves and hot or cold beverage dispensing systems.  UL94 V-O flame rating with very low smoke output makes this material ideal for aircraft interior components.

 

 

CELAZOLE – PBI

 

CELAZOLE - PBICELAZOLE provides the highest mechanical properties of any thermoplastic above 400F (204C) and offers a continuous use operating temperature of 750F (399C). CELAZOLE has outstanding high-temperature mechanical properties for use in aircraft engines and other HOT section areas. This impressive lightweight material retains 100% tensile strength after being submerged in hydraulic fluid at 200°F for thirty days.

 

 

 

 

RYTON – PPS

 

RYTON’s inherent fire retardancy, thermal stability and corrosion resistance makes it perfectly suited for aerospace applications, while its dimensional stability means even the most intricate parts can be molded from RYTON with very tight tolerances.  RYTON is typically used for injection molded parts, however, there is limited availability of extruded rod and plate for machining.

 

 

 

 

VESPEL or DURATRON – PI

 

DURATRON PILike RYTON, VESPEL is dimensionally stable and has fantastic temperature resistance. It can operate uninterrupted from cryogenic temperatures to 550°F, with intermittent to 900°F. Thanks to its resistance to high wear and friction, VESPEL performs with excellence and longevity in severe environments—like those used in aerospace applications. VESPEL is a trademarked material of DuPont and can be provided in direct formed blanks or finished parts directly from DuPont.  AIP provides precision machined components from DuPont manufactured rod and plate stock.  VESPEL is typically used in high temperature and high-speed bearing and wear applications such as stator bushings.

 

 

 

TORLON or DURATRON – PAI

 

TORLONDURATRON PAI’s extremely low coefficient of linear thermal expansion and high creep resistance deliver excellent dimensional stability over its entire service range. DURATRON PAI is an amorphous material with a Tg (glass transition temperature) of 537°F (280°C). DURATRON PAI stock shapes are post-cured using procedures developed jointly by BP Amoco under the TORLON trade name and Quadrant under the DURATRON trade name. A post-curing cycle is sometimes recommended for components fabricated from extruded shapes where optimization of chemical resistance and/or wear performance is required.  TOLRON parts are used in structural, wear and electrical aerospace applications.

 

 

 

TECHTRON – PPS

 

TECHTRONTECHTRON has essentially zero moisture absorption which allows products manufactured from this material to maintain extreme dimensional and density stability. TECHTRON is highly chemical resistant allowing it to operate while submerged in harsh chemicals. It is inherently flame retardant and can be easily machined to close tolerances. It has a broader resistance to chemicals than most high-performing plastics and can work well as an alternative to PEEK at lower temperatures.

 

 

RADEL – PPSU

 

RADELWith high heat and high impact performance, RADEL delivers better impact resistance and chemical resistance than other sulfone based polymers, such as PSU and PEI. Its toughness and long-term hydrolytic stability means it performs well even under autoclave pressure.  RADEL R5500 meets the stringent aircraft flammability requirements of 14CFR Part 25, allowing the aircraft design engineer to provide lightweight, safe and aesthetically pleasing precision components for various aircraft interior layouts.  RADEL can be polished to a mirror finish and is FDA and NSF approved for food and beverage contact.

 

 

 

KEL – F

 

KEL-FKel-F is a winning combination of physical and mechanical properties, non-flammability, chemical resistance, near-zero moisture absorption and of course outstanding electrical properties. This stands out from other thermoplastic fluoropolymers, as only Kel-F has these characteristics in a useful temperature range of -400°F to +400°F. In addition, it has very low outgassing and offers extreme transmissivity for radar and microwave applications. Many aircraft and ground-based random applications use Kel-F.

 

 

PEEK

 

PEEKPEEK can be used continuously to 480°F (250°C) and in hot water or steam without permanent loss in physical properties. For hostile environments, PEEK is a high strength alternative to fluoropolymers. PEEK carries a V-O flammability rating and exhibits very low smoke and toxic gas emission when exposed to flame. PEEK is an increasingly popular replacement for metal in the aerospace industry due to its lightweight nature, mechanical strength, creep and fatigue resistance, as well as its ease in processing. Its exceptional physical and thermal characteristics make it a versatile thermoplastic polymer in many aerospace applications.  AIP has provided flight control, fuel system, interior, engine and aerodynamic related PEEK components for various aircraft OEM and MRO providers worldwide.

 

 

KYNAR – PVDF

 

KYNAR - PVDFAnother example of thermoplastic materials used in aerospace and defense is KYNAR, or PVDF. This polymer has impressive chemical resistance at ambient and elevated temperatures, as well as good thermomechanical and tensile strength. KYNAR is extremely durable due to its weather-ability and toughness even in the most severe environments. In addition to being flame-resistant, KYNAR is easy to machine, too. You can typically find KYNAR components in pipe fitting and various fuel or other fluid-related precision manifolds or connectors.

 

 

 

 

 

Click here to search our material data for more information or request a quote here.

 

 

Follow AIP Precision Machining on Linkedin

linkedin logo

Key Moments in Aircraft & Aerospace Innovation

 

Aviation technology has come a long way to get to where it is today. Over the course of the last century countless test flights, thousands of blueprints, and endless research from passionate minds have propelled the evolution of aircraft and aerospace technologies. Read on to discover how aviation materials have shifted to create a better, safer, and more efficient flight experience.

 

The Pioneers of Aviation

 

For much of human history, we have been fascinated with taking flight. The ancient Greeks contemplated sprouting wings in myths like Icarus and Daedalus – the boy who flew too close to the sun with wax and feather wings. Leonardo Da Vinci sketched flying machines that were way ahead of Renaissance times. It all came to fruition in 1857 when Félix du Temple de la Croix, a French Naval officer, received a patent for a flying machine. By 1874, he had developed a lightweight steam-powered monoplane which flew short distances under its own power after takeoff from a ski-jump.  Finally, in 1903, the Wright Brothers made the first controlled, powered, and sustained flight near Kitty Hawk, North Carolina. The Wright Flyer featured a lightweight aluminum engine, wood and steel construction, and a fabric wing warping. According to the U.S. Smithsonian Institution, the Wright brothers accomplished the “world’s first successful flights of a powered heavier-than-air flying machine.”

 

 

Just 12 years later, the first all-metal airplane (Junkers J1), built by Hugo Junkers (1859-1935), took flight in 1915. Previously, aircraft experts believed that airplanes can only fly with light materials such as wood, struts, tension wires, and canvas. Junkers thought differently and believed that heavier materials like metal were necessary to transport passengers and goods.

 

The Golden Age

 

The Roaring 20’s ushered in airplane racing competitions, which led aircraft designers to focus on performance. Innovators, such as Howard Hughes, found that monoplanes (aircraft with one pair of wings) were more aerodynamic in comparison to biplanes, and that frames made with aluminum alloys were capable of withstanding extraordinary pressures and stresses. Due to its lightweight properties, aluminum also made its way into the internal fittings of the aircraft decreasing the weight and allowing for a more fuel-efficient design.

 

In 1925, Henry Ford acquired the Stout Metal Airplane Company, utilizing the all-metal design principles proposed by Hugo Junkers, Ford developed the Ford Trimotor, nicknamed the “Tin Goose.” The “Tin Goose” propelled the race to design safe and reliable engines for airline travel. A few years later, Henry Ford’s Trimotor NC8407 became the first airplane flown by Eastern Air Transport, a leading domestic airline in the 1930s flying routes from New York to Florida. This positioned metal as the primary material for domestic aircraft, and eventually military applications with the onset of WWII.

 

 

Plastic’s Mettle: Wartime Materials Take Flight

 

By the 1930’s, the use of wood became obsolete and all-metal aircrafts were produced for their durability. Imperial Airways, known today as British Airways, made headway in the air travel industry with advertisements of luxury and adventure to cross borders. However, those borders were sealed off with the breakout of WWII. In 1939, Imperial Airways, a private commercial airline, was ordered to operate from a military standpoint at Bristol Airport.  Across the Atlantic, engineers focused their efforts on building aircraft meant specifically for military strategy – strength, durability, agility, and weaponry.  The Boeing P-26 “Peashooter” entered service with the United States Army Air Corps as the first all-metal and low-wing monoplane fighter aircraft. Known for its speed and maneuverability, the small but feisty P-26 formed the core of pursuit squadrons throughout the United States.

 

 

In times of war, there are often significant advancements in material usage, weaponry, and machinery. World War II was no different. Plastics entered the scene during World War II, starting with the replacement of metal parts for rubber parts in U.S. aircraft after Japan limited metal trade with the United States. Following that, plastics of higher grades began to replace electrical insulators and mechanical components such as gears, pulleys, and fasteners. Aircraft manufacturers began to replace aluminum parts with plastics as they were lighter and thus more fuel efficient than aluminum.

 

The Race for Space

 

Lighter and more fuel efficient were the key words following World War II as nations turned their attention to the skies and beyond. The space program in the 1960’s brought together illustrious minds to solve the seemingly impossible feat of being the first country to put mankind on the moon, thus, the great race for space began. Aircraft were now going beyond the sky and NASA scientists knew they were dealing with new territory in aero innovation. They needed a material that could break the Earth’s atmosphere and carry a hefty amount of fuel, while protecting the spacecraft’s crew from extreme temperatures. NASA scientists turned to plastics, specifically Kevlar and nylon. Layers of nylon and other insulators were wrapped under the body of the spacecraft to protect the crew from the extreme temperatures of space. Both of these plastics are still staples in the aerospace industry – keeping the Hubble telescope and many other satellites scanning humanity’s charted and uncharted expanse.

 

 

Plastics of the Future

 

Plastics continue to lead the future of materials in aerospace and aviation industries for their durability, precision, and ingenuity. For example, in 2009, the 787-8 Dreamliner made its first maiden flight, becoming the first aircraft to have wings and fuselage made from carbon-fiber plastics. Besides being lightweight, plastics offered increased safety with their resistance to high impact, and their proven ability to withstand chemically harsh environments. This proved plastics an invaluable material when compared to alternative material choices like glass or metal.

 

 

Starting in the 1970s, plastics began to play a more crucial part in the defense and military industry, especially in stealth aircraft. The U.S. Air Force saw the potential of plastics when they learned that plastics could absorb radar waves. The added benefit of reduced radar signature makes plastics ideal for creating stealthy aircraft. Plastics continue to contribute to innovation in the defense industry, especially with stealth fabrics and other composite materials which can virtually create invisibility to radars in the near future.

 

Aside from plastics becoming increasingly popular for use in the defense and military sector, high grade plastics like PEEK are highly favorable for space travel due to its ability to function in hostile environments, critical in space exploration. Plastics are even being researched for lightweight radiation shielding for the International Space Station and flights to Mars.

 

At AIP, we’re proud to be a continued part of aviation and aerospace advancements and we look forward to engineering solutions for the next frontier. In fact, at the time this article was written, we are AS9100D:2016 certified, which means we meet the high-quality standards of applications in the aerospace industry. In addition, we are also ISO 13485:2016, ISO 9000:2015, FDA audited, and ITAR certified. Above call, we strive to create genuine relationships with our customers to deliver mission critical components with promise. To learn how we can help you, contact us today.

 

Interested to learn more? Read “Plastics in Aerospace: The Secret to Fuel-Efficient Aircraft

 

Explore Our Inventory

or request a quote here.

Follow AIP Precision Machining on Linkedin

linkedin logo

AIP Precision Machining is proud to officially be AS9100:2016 certified as part of our dedication to quality in machining for aerospace applications. To share what that means, we’ve put together the following article to explain what AS9100D:2019 certification is and how we achieved it.

 

What is the AS9100D:2016 Standard?

 

AS9100 is a company level certification based on the ISO 9001 quality standard requirements, but with additional requirements based on the needs of the aerospace industry. These satisfy both ISO 9001 quality standards and DOD, NASA and FAA requirements.

 

This certification is based on “Quality Management Systems – Requirements for Aviation, Space and Defense Organizations,” a standard published by the Society of Automotive Engineers (SAE). A third-party certifying body issues AS9100D:2016 certification. Part of this process includes annual or regularly scheduled audits to ensure compliance with the AS9100 standard.

 

AS9100D is meant for any organization that does business in the aerospace sector, including suppliers, contractors and manufacturers, such as AIP. It’s an internationally accepted standard, though different countries use their own numbering conventions.

 

As of this blog, AS9100D:2016 is the most recent version of the AS9100, revising the previous issue, AS9100C.

 

What about this certification helps AIP Precision Machining serve the aerospace market?

 

For the past 36 years, AIP Precision Machining has been supplying mission-critical polymer and composite components to Tier 1 through 3 aerospace OEMs. The latest AS9100D certification was required as a means to help open new “doors” in this marketplace for AIP. We were already the global leader for technical know-how and capability when considering supply options for aerospace like services due to our talented and advanced team. 

 

Similar to a job application, great candidates are many times excluded from opportunities due to lacking minimum accreditations. In our journey to offer our talent and services to new US-based or globally located aerospace OEMs, AS9100 certification allows AIP to showcase our capabilities for this market.

 

“There is no doubt in my mind that AIP is and always had been overly equipped to provide mission-critical precision aerospace components,” said John MacDonald, President of AIP Precision Machining. “It is just that now we have achieved the accreditation to show those who do not know of us that we are capable.”

 

What about AIP Precision Machining allows us to achieve AS9100D:2016 certification?

 

“Anyone who tells you that it is not about the people is wrong,” said MacDonald. “Leadership provided the vision and desire to seek out AS9100D certification, but our awesome team at AIP ran the marathon and got us over the finish line. It is also our team who will maintain and continually enhance those key processes to make us better every day at serving our valued customers.”

 

Want to contact us about aerospace manufacturing?

Get in touch with us online, or see our  AD9100D:2016 certification

Follow AIP Precision Machining on Linkedin

linkedin logo

An Informational Brief on Polymer Machining

 

Delrin®, also commonly known as an acetal (polyoxymethylene) homopolymer, is an impact and wear resistant semi-crystalline thermoplastic popular for a broad range of machining applications. To list just a few of its impressive qualities, Delrin offers great stiffness, flexural modulus, and high tensile and impact strength.

Our latest machining guide discusses what goes into machining Delrin and how its considerations differ from other manufacturing options such as metal machining, injection molding, and 3D printing.

How does AIP approach Delrin and its machining process? To start, we’ll explain the difference between machining Delrin, a thermoplastic, and machining thermosets.

 

Machining Thermoplastics vs Thermosets

 

We’ve already said that Delrin is a thermoplastic, but what does that mean exactly?

All polymers can more or less be divided into two categories: thermoplastics and thermosets. The main difference between them is how they react to heat. Thermoplastics like Delrin, for example, melt in the heat, while thermosets remain “set” once they’re formed. Understanding the technical distinction between these types of materials is essential to CNC machining them properly.

What type of thermoplastic is Delrin in particular? Acetal homopolymer is a semicrystalline, engineering thermoplastic.

 

Properties & Grades of Machined Delrin

 

This strong, stiff and hard acetal homopolymer is easy to machine and exhibits dimensional stability and good creep resistance, among several other desirable qualities. Delrin is also known for its superior friction resistance, high tensile strength, and its fatigue, abrasion, solvent and moisture resistance.

The latter quality allows Delrin to significantly outperform other thermoplastics like Nylon in high moisture or submerged environments without losing high-performance in the process. In other words, Delrin can retain its low coefficient of friction and good wear properties in wet environments.

One of the main reasons for Delrin’s popularity is its sheer versatility. The above blend of unique qualities makes Delrin broadly applicable to various industries in the medical, aerospace and energy sectors. For example, you can machine Delrin for medical implants and instruments, or for industrial bearings, rollers, gears, and scraper blades. It is ideal for smaller applications at temperatures below 250 °F (121°C) and can have centerline porosity.

Some of the Delrin grades we regularly machine at AIP include:

 

PTFE-Filled Acetals

 

PTFE (polytetrafluoroethylene) filled grades of Delrin is ideal where impact strength and wear capability are of the highest importance.

 

Glass-Reinforced Acetals

 

Acetals that are reinforced with glass have a much higher strength and greater heat resistance than other grades of Delrin.

 

FDA-Compliant Acetals

 

There are FDA-compliant grades of Delrin available for use in medical and food-related applications.

 

Machining Delrin

 

Machining Delrin

 

It’s true that Delrin is an easy material to work with in terms of machining. It is a very stable material, which makes precise, tight tolerances easier to achieve for this thermoplastic.

While machining, keep in mind that Delrin is sensitive to heat at or above 250 °F (121°C).

Balance the material removal as best as you can to keep your dimensions stable.

We also suggest non-aromatic, air-based coolants to achieve optimum surface finishes and close tolerances. Coolants have the additional benefit of extending tool life as well.

 

Preventing Contamination

 

Contamination is a serious concern when machining polymer components for technically demanding industries such as medical and life sciences. To ensure the highest level of sanitation down to the sub-molecular level, AIP Precision Machining designs, heat-treats, and machines only plastics, with any sub-manufactured metalwork processed outside our facility.

 

Delrin Machining Guide: Supportive Information

 

General Engineering Materials

Want to learn more about AIP’s polymer and composite materials?

or request a quote here.

Follow AIP Precision Machining on Linkedin

linkedin logo

An Informational Brief on Polymer Machining

 

Did you know that PPS (or Polyphenylene sulfide) products offer the broadest resistance to chemicals of any high-performance thermoplastic? It’s no surprise that this makes them a popular choice for industrial applications such as wheel bushings, chemical pumps, and compound clamp rings for semiconductor wafers.

 

What goes into machining this thermoplastic, however, and how does it differ from metal machining, injection molding, or 3D printing?

 

With Machining PPS: A Plastics Guides, AIP provides you with a guide to this material and its machining process. First, let’s start with the basics: thermoplastics vs thermosets.

 

 

Machining Thermoplastics vs Thermosets

 

We’ve already said that PPS is a thermoplastic, but what does that mean exactly?

 

All polymers can more or less be divided into two categories: thermoplastics and thermosets. The main difference between them is how they react to heat. Thermoplastics like PPS, for example, melt in heat, while thermosets remain “set” once they’re formed. Understanding the technical distinction between these types of materials is essential to CNC machining them properly.

 

What type of thermoplastic is PPS in particular? It’s a semi-crystalline, high-performance thermoplastic that has an extremely stable molecular structure. The chemical resistance of PPS is often compared to PEEK  and fluoropolymers.

 

 

Properties & Grades of Machined PPS

 

There’s a lot to like about PPS’s material properties. As we mentioned before, PPS has exceptional chemical resistance that makes its bearing grades especially favorable for the chemical industry or caustic environments. In particular, its resistance to acids, alkalis, ketones, and hydrocarbons lend PPS stellar structural performance in harsh chemicals.

 

Additionally, PPS materials are inert to steam as well as strong bases, fuels and acids. Combine that with a low coefficient of thermal expansion and zero moisture absorption, and you get a material that is ideal for continuous use in corrosive or hostile environments. PPS has replaced stainless steel for a lot of industrial applications for this reason.

 

Most impressively, PPS will not dissolve at temperatures below approximately 200 °C, no matter what solvent is used. In fact, all grades of PPS share UL94 V-0 flammability ratings, without requiring flame retardant additives, resulting in an excellent material for aircraft where flame resistance is paramount.

 

Some grades of PPS that we regularly machine at AIP Precision Machining include Ryton®, Fortron®, TECHTRON®, TECTRON® HPV, TECATRON PVX and TECATRON CMP.

 

 

Machining PPS

 

Annealing PPS

The process of annealing and stress-relieving PPS reduces the likelihood of surface cracks and internal stresses occurring in the material. Post-machining annealing also helps to reduce stresses that could potentially contribute to premature failure. AIP’s special annealing process for PPS is designed to take the specific properties of PPS into account, and we advise anyone working with PPS to hire a manufacturer that understands its unique demands.

 

Machining PPS

PPS is a fantastic material for machining. Its low shrinkage and stable dimensional properties make it easy to machine to incredibly tight, precise tolerances. A unique characteristic of PPS is that when dropped, it sounds just like a piece of metal hitting the floor.

 

PPS, like many other thermoplastics, is notch sensitive, so take care to avoid sharp corners in design. We recommend carbide tipped cutting tools for working with PPS as they provide an ideal speed and surface finish.

 

We also suggest non-aromatic, water-soluble coolants, such as pressurized air and spray mists, to achieve optimum surface finishes and close tolerances. Coolants have the additional benefit of extending tool life as well. No known coolants attack nor degrade PPS.

 

Preventing Contamination

Contamination is a serious concern when machining polymer components for technically demanding industries such as aerospace. To ensure the highest level of sanitation down to the sub-molecular level, AIP Precision Machining designs, heat-treats, and machines only plastics, with any sub-manufactured metalwork processed outside our facility.

 

To learn more, read our article “Three Ways to Ensure Sterilization in Your Plastic Machined Medical Applications.”

 

 

PPS Machining Guide: Supportive Information

Chemical Resistant Materials Guide

Energy Sector Materials Guide

Aerospace Sector Materials Guide

 

Explore Our Inventory

Follow AIP Precision Machining on Linkedin

linkedin logo

 

How Aluminum Got Dethroned by Thermoplastics in Aerospace

 

Cup holders. Magazines. Suit cases. Aircraft engines. Here’s a riddle, what do these items all have in common? If you’re an aircraft operator, the answer is obvious: they all add weight, making them a drain on your fuel costs.

 

If weight is one of the main operating costs of an aircraft, then it’s no surprise that airlines want to lose a few pounds. Over the last 35 years, AIP has witnessed firsthand the incredible weight savings that can be gained from using lightweight polymers and composites for aerospace applications.

 

How Airlines “Slim Down” Operating Costs


How much can an ounce cost you? Plenty. In the case of United Airlines, removing a single ounce from its in-flight magazine has translated to saving $290,000 a year. Yes, a single ounce can hit an airline with up to six digits in costs.

 

If thinner paper can have such an impact on your bottom line, then you can imagine the significant cost savings that can come from manufacturing lighter aerospace components. What’s the most lightweight solution for aircraft operators today? We have one word for you: plastics.

 

What Makes Plastics the Secret to Aircraft Fuel-Efficiency


Aluminum was popular during the “Golden Age of Aviation” because of its strength and durability as well as its lightness when compared to other metals like steel. As a result, many aircraft components have traditionally been metal, from aircraft interiors, to landing gear, aircraft engines and structural components.

 

Now consider the fact that polymer and composite materials can be up to ten times lighter than metal. It’s no wonder that as more thermoplastic materials come on the market and new manufacturing opportunities arise, metal replacement has been seen as one of the best opportunities to reduce airline weight.

 

How big is the impact of switching from aluminum to plastic parts like PEEK and ULTEM in aerospace applications? Operators can earn weight savings of up to 60%. This translates to lower lifetime fuel costs, reduced emissions and extended flight range for operators.

 

“Weighing” the Option of Plastics in Aerospace


Weight alone is a massive reason to consider thermoplastics for aerospace, but weight isn’t the only factor at play in material selection.

 

After all, wood is lighter than metal, but there’s a reason we don’t build spruce airframes like the first plane from the Wright brothers: it wouldn’t be safe today to fly a wooden plane! Aerospace components need to be able to survive in corrosive, harsh environments as well as provide resistance to high temperatures.

 

In other words, it’s crucial that your mission-critical components aren’t just lightweight, but also high-performing.

 

At AIP, we carefully apply our decades of material expertise to select the right material for your application’s needs. Remember that your aerospace plastics manufacturer should understand the unique demands of your industry and your application, and have experience machining the material you require.

 

Want to learn more about how AIP reduces costs for aircraft operators?

Read how machined polymer components can take a load off aircraft interiors in our aerospace case study.

 

Download Our Case Study

Follow AIP Precision Machining on Linkedin

linkedin logo