PART SUMMARY:

 

One of the high-performance thermoplastics that AIP machines is Polyetherimide (PEI), known by its tradename ULTEM.  Due to its weight-saving properties, high chemical and hydrolysis resistance and tensile strength, ULTEM is popular across several industries: Automotive, aerospace and defense, electrical and electronic market, medical and life sciences and industrial applications and appliances.  Read on to learn about what this incredible polymer can do!

 

MATERIAL PROPERTIES:

 

Polyetherimide (PEI) is an amorphous thermoplastic.  Polyetherimide was developed to provide sufficient flexibility and good melt processability while maintaining excellent mechanical and thermal properties.

 

Key properties of ULTEM PEI include:

  • Handling at temperatures up to 340°F (171°C)
  • Heat Resistance
  • Flame Resistance
  • Chemical Resistance
  • High Rigidity
  • Highest Dielectric Strength
  • Hydrolysis Resistance
  • Low Thermal Conductivity

 

ULTEM Applications

As mentioned previously, ULTEM is a highly sought-after thermoplastic for weight-saving capabilities in aerospace components to reusable autoclave sterilizations in medical applications.  However, it’s most commonly used in high voltage electrical insulation applications.

 

Common uses include:

  • Analytical Instrumentation
  • Dielectric Properties Required
  • Electrical Insulators
  • High Strength Situations
  • Reusable Medical Devices
  • Semiconductor Process Components
  • Structural Components
  • Underwater Connector Bodies

 

So, what can this polymer do?  Let’s take a closer look at how ULTEM (PEI) is applied in the Aerospace & Defense, Medical & Life Sciences and Specialized Industrial markets:

 

WHAT CAN ULTEM DO FOR AEROSPACE & DEFENSE?

 

In the Aerospace & Defense Industry, ULTEM is often applied to aircraft components for weight reduction in place of metal parts.  Additionally, since it has a high thermal resistance rating, polymer components have the benefit of evading radar detection in military aircraft.

 

AIP machines ULTEM 1000 & ULTEM 2300

 

ULTEM 2300 is a 30 percent glass filled version of virgin ULTEM 1000.  The addition of glass increases ULTEM 1000’s dimensional stability by almost three times.

 

For over three decades, AIP has provided flight control, fuel system, interior, engine and aerodynamic-related ULTEM components for various aircraft OEM and MRO providers worldwide.  As this industry continues to expand, evolve and innovate, the demand for high-performance materials like ULTEM contribute significantly to streamlined operations.

 

WHAT CAN ULTEM DO FOR MEDICAL & LIFE SCIENCES?

 

In the Medical Industry, biocompatibility and sterilization are paramount to medical instruments and implants. ULTEM is often a popular choice in this sector due to its resistance to chemicals and lipids.  Polyetherimide also withstands dry heat sterilization at 356°F (180°C), ethylene oxide gas, gamma radiation and steam autoclave.

 

Some popular medical applications include disposable and re-usable medical devices and medical monitor probe housings.  These could be surgical instrument handles and enclosures or non-implant prostheses.  It gets extensive use in membrane applications due to its separation, permeance and biocompatible properties.

 

WHAT CAN ULTEM DO FOR SPECIALIZED INDUSTRIAL Sectors?

 

At AIP, we precision machine ULTEM for many specialized industrial applications as well: automotive, electrical and metal replacement, to name a few.  Despite the diversity of these industrial applications, we have the inventory and machining capabilities to provide solutions for any project specifications.

 

PEI is most often used in electrical and lighting systems in the automotive market for its high heat resistance, mechanical integrity and strength.  Principal automotive applications include: transmission parts, throttle bodies, ignition components, thermostat housings, bezels, reflectors, lamp sockets and electromechanical systems.

 

The electrical and electronic markets demand high heat resistant materials.  ULTEM is an excellent choice for applications such as electrical circuit boards, switches, connectors, electronic chips and capacitors.

 

As discussed previously, thermoplastics like ULTEM often replace metal parts in industrial applications.  For this reason, it’s often used in housewares, especially fluid handling systems.  Some of these applications are: HVAC equipment, microwave cookware, steam and curling irons, dual-ovenable trays for food packaging that meets FDA food packaging requirements.

 

What can AIP Precision Machining do for you?

 

From concept to completion, our team of engineers will work with you to realize the final product.  With some of the fastest lead times in the industry, our unrivaled technical experts we can tackle your polymer challenges.

 

What Can This Polymer Do? Supportive Information

 

Medical Sector Biomaterials Guide

Energy Sector Materials Guide

Aerospace Sector Materials Guide

Amorphous Materials

Aerospace Case Study: Weight-saving Polymers

 

 

CUSTOMIZED FOR YOUR APPLICATION

Schedule a Consultation.

Follow AIP Precision Machining on Linkedin

linkedin logo

Learn about AIP’s precision machining capabilities for mission-critical components.

 

High-performance precision plastics require high-performance precision CNC machining.  CNC machines, or computer numerically controlled machines, are electro-mechanical devices that use tools at varying axes (usually 3-5) to produce a physical part from a computer design file.

 

Our modern society runs on CNC machined plastic components – from everyday household piping to critical spinal implants.  The breadth of materials, shapes and industries served is endless.

At AIP, we precision machine parts for industries such as the aerospace & defense, medical & life sciences and power & energy.  Each part that is CNC machined comes with design specifications and dimensional tolerances.  Our machinists are capable of crafting parts at .002 mm tolerance, which can make a whole lot of a difference in the performance of a mission-critical part.

 

Let’s back up a moment though.  What are dimensional tolerances? And how do you know if your project should demand a tighter tolerance?  Read on in this month’s blog to find out.

 

Let’s Talk About Tolerance

 

What are machining tolerances?

In CNC machining terms, tolerance, or dimensional accuracy, is the amount of deviation in a specific dimension of a part caused by the manufacturing process.  No machine can perfectly match specified dimensions.  The designer provides these specifications to the machinists based on the form, fit and function of a part.

 

How are tolerances measured?   

CNC machines are precise and measured in thousandths of an inch, referred to as “thou” among machinists.  Any system is usually expressed as “+/-”; this means that a CNC machine with a tolerance of +/- .02 mm can either deviate an extra .02 mm from the standard value or less .02 mm by the standard value.

 

A precision machining tolerance scale
 

Why are tolerances critical?

Tolerances keep the integrity and functionality of the machined part.  If the component is manufactured outside of the defined dimensions, it is unusable, since the crucial features are not fulfilling the intent of the design.

 

How close can a tolerance get?

Tolerance depends on the material that you use and the desired purpose of the design.  In plastics machining, the tolerances can be from +/- 0.10 mm to +/- 0.002 mm.  Tighter tolerances should only be used when it is necessary to meet the design criteria for the part.

 

When .002 mm Matters

 

What is the .002 mm difference?  In many industries, such as the medical industry, it is crucial to machine parts with extreme precision so that they can interact with human tissue or other medical devices.  In fact, when it comes to manufacturing medical applications, subtractive manufacturing (CNC machining) provides tighter tolerances than additive manufacturing (3-D printing).

 

 

Color Pencil compared to precision machining
(AIP PEEK Eye Implant)
 

Tight tolerances like the .002 mm are important because plastics are machined to interact with other parts.  In particular, CNC milled or turned plastics are unique designs for limited quantities, such as custom-made brackets and fasteners, or components for prototyping purposes.

 

One of the most critical considerations when applying tolerances is to take into account fits. This refers to how shafts will fit into bushings or bearings, motors into pilot holes, and so on. Depending on the application, the part may require a clearance fit to allow for thermal expansion, a sliding fit for better positioning, or an interference fit for holding capability.

 

As with anything that is precision machined, tighter tolerances demand time and skill.  Make sure to work with a certified company like AIP that has the infrastructure and expertise to complete your project with unmatched precision and unrivaled experience.

 

Let our team go to work for you

 

With 36+ years of experience in the industry, our dedicated craftsmen and ties to leading plastic manufacturers allow us to provide you with unrivaled knowledge and consulting in material selection, sizing, manufacturing techniques and beyond to best meet your project needs.

 

AIP offers a unique combination of CNC machining, raw material distribution, and consultancy as a reliable source for engineering information for materials such as PEEK, TORLON, ULTEM and more.

 

We are AS 9100D compliant; certified and registered with ISO 13485 and ISO 9001 and standards in our commitment to machining quality custom plastic components for specialized industrial sectors. Quality assurance is included as an integral part of our process and is addressed at every step of your project, from concept to completion.

 

READY FOR A CONSULTATION?

Tell us about your power & energy needs and we’ll get the job done quickly and efficiently at a competitive price.

or request a quote here.

Follow AIP Precision Machining on Linkedin

linkedin logo

PART SUMMARY:

 

PEEK (PolyEtherEtherKetone) is a lightweight highly chemical resistant thermoplastic popular in the Aerospace & Defense and Medical & Life Sciences Industries.  From implants to custom medical devices or machined lightweight aircraft components, PEEK is ideal for a variety of specialized applications.

 

MATERIAL PROPERTIES:

 

PEEK is considered a semi-crystalline, high-performance thermoplastic. This gives it enough elasticity to be precision machined to various custom designs, with strong mechanical properties that provide resistance to fatigue and stress-cracking, as well as a good structure for bearing, wear and structural applications.

 

Key properties of PEEK include:

  • Handling at temperatures up to 480°F (250°C)
  • Abrasion Resistance
  • Chemical Resistance
  • High Ductility
  • High Elongation
  • Hydrolysis Resistance
  • Low Outgassing

 

What can this polymer do?

 

Due to its elasticity and resistance to chemicals, abrasion and hydrolysis, PEEK is a highly sought-after thermoplastic for both industrial-grade and medical-grade applications.

 

Common uses include:

  • Aerospace Weight Reduction Components
  • Dental Implants
  • Food and Beverage Automated Manufacturing Equipment
  • Food and Beverage Filling
  • Medical Implants
  • Medical Instruments
  • Metal Replacement
  • Processing Equipment
  • Semiconductor Manufacturing Equipment
  • Vacuum Chamber Applications

 

So, what can this polymer do?  Let’s take a closer look at how it is applied in the Aerospace & Defense and Medical & Life Sciences industries:

 

AEROSPACE & DEFENSE

 

In 1978, ICI invented PEEK, a member Of the PAEK (polyaryletherketone) family of thermoplastic polymers.  It quickly gained recognition in the aerospace and defense industry for its weight-saving capabilities over metal alloys.  For example, Airbus used PEEK for a primary structural component in the door of the A350 XWB to improve quality and reduce weight and costs by 40 percent.  Over the next 15 years, industry professionals forecast that 41,000 new and replacement planes will be required.  Officials and engineers in the aerospace industry are looking for alternative high-performance thermoplastics like PEEK to meet this material demand.

 

Read more on PEEK’s impact in the aerospace and defense industry in our downloadable booklet below

 

As demand for stream-lined, innovative materials grows, we continue to serve and precision machine complex polymers for the aerospace and defense industries. For over three decades, we have provided flight control, fuel system, interior, engine and aerodynamic-related PEEK components for various aircraft OEM and MRO providers worldwide.

 

MEDICAL & LIFE SCIENCES

 

PEEK gained traction in the medical industry 20 years after the aerospace industry adopted it. In the late 1990s, Invibio Biomaterial Solutions commercialized a bio-compatible grade of PEEK (PEEK-OPTIMA). Ever since then, demand for medical grade PEEK devices has skyrocketed. From surgical instruments to spinal fusion implants, PEEK has a wide range of applications that only continues to expand in the medical industry.

 

Peek Neurosurgical Case Study

 

One such example of PEEK’s versatility is in neurosurgery for stroke and traumatic brain injuries.  Dr. Rohit Khanna partnered with AIP Precision Machining engineers to create a device that would expand without another operation, yet hold the “bone flap” and the rest of the skull together.

 

Problem

Dr. Rohit Khanna wanted to develop a device that would relieve swelling in the skull for patients undergoing brain surgery, which can lead to complications or even death.

 

Solution

The polymer of choice?  PEEK.  AIP’s engineers machined a medical component that was flexible, strong and sensitive enough to fulfill the necessary requirements for this critical medical part.  PEEK was also the best choice for this medical application because it was the most ductile and biocompatible.

 

medical tool built with peek polymer
 

Resolution

Currently, the FDA is processing the PEEK surgical piece for clearance to conduct clinical trials.  If it is approved to move forward, it can make leaps and bounds in reducing the need for multiple brain surgeries, saving more lives.

 

Get the full case study on PEEK

 

What can this polymer do?

From concept to completion, our team of engineers will work with you to realize the final product.  With some of the fastest lead times in the industry, our unrivaled technical experts we can tackle your polymer challenges.

 

What Can This Polymer Do? Supportive Information

PEEK VARIANTS

 

Download our “What Can This Polymer Do?” booklet.

We’ve put together our premier PEEK applications in a condensed booklet you can take with you.

Learn here.

Follow AIP Precision Machining on Linkedin

linkedin logo

Key Moments in Aircraft & Aerospace Innovation

 

Aviation technology has come a long way to get to where it is today. Over the course of the last century countless test flights, thousands of blueprints, and endless research from passionate minds have propelled the evolution of aircraft and aerospace technologies. Read on to discover how aviation materials have shifted to create a better, safer, and more efficient flight experience.

 

The Pioneers of Aviation

 

For much of human history, we have been fascinated with taking flight. The ancient Greeks contemplated sprouting wings in myths like Icarus and Daedalus – the boy who flew too close to the sun with wax and feather wings. Leonardo Da Vinci sketched flying machines that were way ahead of Renaissance times. It all came to fruition in 1857 when Félix du Temple de la Croix, a French Naval officer, received a patent for a flying machine. By 1874, he had developed a lightweight steam-powered monoplane which flew short distances under its own power after takeoff from a ski-jump.  Finally, in 1903, the Wright Brothers made the first controlled, powered, and sustained flight near Kitty Hawk, North Carolina. The Wright Flyer featured a lightweight aluminum engine, wood and steel construction, and a fabric wing warping. According to the U.S. Smithsonian Institution, the Wright brothers accomplished the “world’s first successful flights of a powered heavier-than-air flying machine.”

 

 

Just 12 years later, the first all-metal airplane (Junkers J1), built by Hugo Junkers (1859-1935), took flight in 1915. Previously, aircraft experts believed that airplanes can only fly with light materials such as wood, struts, tension wires, and canvas. Junkers thought differently and believed that heavier materials like metal were necessary to transport passengers and goods.

 

The Golden Age

 

The Roaring 20’s ushered in airplane racing competitions, which led aircraft designers to focus on performance. Innovators, such as Howard Hughes, found that monoplanes (aircraft with one pair of wings) were more aerodynamic in comparison to biplanes, and that frames made with aluminum alloys were capable of withstanding extraordinary pressures and stresses. Due to its lightweight properties, aluminum also made its way into the internal fittings of the aircraft decreasing the weight and allowing for a more fuel-efficient design.

 

In 1925, Henry Ford acquired the Stout Metal Airplane Company, utilizing the all-metal design principles proposed by Hugo Junkers, Ford developed the Ford Trimotor, nicknamed the “Tin Goose.” The “Tin Goose” propelled the race to design safe and reliable engines for airline travel. A few years later, Henry Ford’s Trimotor NC8407 became the first airplane flown by Eastern Air Transport, a leading domestic airline in the 1930s flying routes from New York to Florida. This positioned metal as the primary material for domestic aircraft, and eventually military applications with the onset of WWII.

 

 

Plastic’s Mettle: Wartime Materials Take Flight

 

By the 1930’s, the use of wood became obsolete and all-metal aircrafts were produced for their durability. Imperial Airways, known today as British Airways, made headway in the air travel industry with advertisements of luxury and adventure to cross borders. However, those borders were sealed off with the breakout of WWII. In 1939, Imperial Airways, a private commercial airline, was ordered to operate from a military standpoint at Bristol Airport.  Across the Atlantic, engineers focused their efforts on building aircraft meant specifically for military strategy – strength, durability, agility, and weaponry.  The Boeing P-26 “Peashooter” entered service with the United States Army Air Corps as the first all-metal and low-wing monoplane fighter aircraft. Known for its speed and maneuverability, the small but feisty P-26 formed the core of pursuit squadrons throughout the United States.

 

 

In times of war, there are often significant advancements in material usage, weaponry, and machinery. World War II was no different. Plastics entered the scene during World War II, starting with the replacement of metal parts for rubber parts in U.S. aircraft after Japan limited metal trade with the United States. Following that, plastics of higher grades began to replace electrical insulators and mechanical components such as gears, pulleys, and fasteners. Aircraft manufacturers began to replace aluminum parts with plastics as they were lighter and thus more fuel efficient than aluminum.

 

The Race for Space

 

Lighter and more fuel efficient were the key words following World War II as nations turned their attention to the skies and beyond. The space program in the 1960’s brought together illustrious minds to solve the seemingly impossible feat of being the first country to put mankind on the moon, thus, the great race for space began. Aircraft were now going beyond the sky and NASA scientists knew they were dealing with new territory in aero innovation. They needed a material that could break the Earth’s atmosphere and carry a hefty amount of fuel, while protecting the spacecraft’s crew from extreme temperatures. NASA scientists turned to plastics, specifically Kevlar and nylon. Layers of nylon and other insulators were wrapped under the body of the spacecraft to protect the crew from the extreme temperatures of space. Both of these plastics are still staples in the aerospace industry – keeping the Hubble telescope and many other satellites scanning humanity’s charted and uncharted expanse.

 

 

Plastics of the Future

 

Plastics continue to lead the future of materials in aerospace and aviation industries for their durability, precision, and ingenuity. For example, in 2009, the 787-8 Dreamliner made its first maiden flight, becoming the first aircraft to have wings and fuselage made from carbon-fiber plastics. Besides being lightweight, plastics offered increased safety with their resistance to high impact, and their proven ability to withstand chemically harsh environments. This proved plastics an invaluable material when compared to alternative material choices like glass or metal.

 

 

Starting in the 1970s, plastics began to play a more crucial part in the defense and military industry, especially in stealth aircraft. The U.S. Air Force saw the potential of plastics when they learned that plastics could absorb radar waves. The added benefit of reduced radar signature makes plastics ideal for creating stealthy aircraft. Plastics continue to contribute to innovation in the defense industry, especially with stealth fabrics and other composite materials which can virtually create invisibility to radars in the near future.

 

Aside from plastics becoming increasingly popular for use in the defense and military sector, high grade plastics like PEEK are highly favorable for space travel due to its ability to function in hostile environments, critical in space exploration. Plastics are even being researched for lightweight radiation shielding for the International Space Station and flights to Mars.

 

At AIP, we’re proud to be a continued part of aviation and aerospace advancements and we look forward to engineering solutions for the next frontier. In fact, at the time this article was written, we are AS9100D:2016 certified, which means we meet the high-quality standards of applications in the aerospace industry. In addition, we are also ISO 13485:2016, ISO 9000:2015, FDA audited, and ITAR certified. Above call, we strive to create genuine relationships with our customers to deliver mission critical components with promise. To learn how we can help you, contact us today.

 

Interested to learn more? Read “Plastics in Aerospace: The Secret to Fuel-Efficient Aircraft

 

Explore Our Inventory

or request a quote here.

Follow AIP Precision Machining on Linkedin

linkedin logo

Where Does This Part Go?

PPS Wheel Bushing | AIP Precision Machining

 

If you’ve been to a popular Florida amusement park, then it’s possible you’ve encountered the latest part starring in our “Where Does This Part Go?” series.

Find out why this part really makes a “splash” in the section below…

Follow AIP Precision Machining on Linkedin

linkedin logo